一种快速分析美国各县缺血性心脏病死亡率时空模式的方法(1999-2021)

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
A. Urdangarin , T. Goicoa , P. Congdon , M.D. Ugarte
{"title":"一种快速分析美国各县缺血性心脏病死亡率时空模式的方法(1999-2021)","authors":"A. Urdangarin ,&nbsp;T. Goicoa ,&nbsp;P. Congdon ,&nbsp;M.D. Ugarte","doi":"10.1016/j.sste.2024.100700","DOIUrl":null,"url":null,"abstract":"<div><div>Ischemic heart disease (IHD) remains the primary cause of mortality in the US. This study focuses on using spatio-temporal disease mapping models to explore the temporal trends of IHD at the county level from 1999 to 2021. To manage the computational burden arising from the high-dimensional data, we employ scalable Bayesian models using a “divide and conquer” strategy. This approach allows for fast model fitting and serves as an efficient procedure for screening spatio-temporal patterns. Additionally, we analyze trends in four regional subdivisions, West, Midwest, South and Northeast, and in urban and rural areas. The dataset on IHD contains missing data, and we propose a procedure to impute the omitted information. The results show a slowdown in the decrease of IHD mortality in the US after 2014 with a slight increase noted after 2019. However, differences exists among the counties, the four big geographical regions, and rural and urban areas.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"52 ","pages":"Article 100700"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast approach for analyzing spatio-temporal patterns in ischemic heart disease mortality across US counties (1999–2021)\",\"authors\":\"A. Urdangarin ,&nbsp;T. Goicoa ,&nbsp;P. Congdon ,&nbsp;M.D. Ugarte\",\"doi\":\"10.1016/j.sste.2024.100700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ischemic heart disease (IHD) remains the primary cause of mortality in the US. This study focuses on using spatio-temporal disease mapping models to explore the temporal trends of IHD at the county level from 1999 to 2021. To manage the computational burden arising from the high-dimensional data, we employ scalable Bayesian models using a “divide and conquer” strategy. This approach allows for fast model fitting and serves as an efficient procedure for screening spatio-temporal patterns. Additionally, we analyze trends in four regional subdivisions, West, Midwest, South and Northeast, and in urban and rural areas. The dataset on IHD contains missing data, and we propose a procedure to impute the omitted information. The results show a slowdown in the decrease of IHD mortality in the US after 2014 with a slight increase noted after 2019. However, differences exists among the counties, the four big geographical regions, and rural and urban areas.</div></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"52 \",\"pages\":\"Article 100700\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

缺血性心脏病(IHD)仍然是美国死亡的主要原因。本研究采用时空疾病作图模型,探讨1999 - 2021年县域IHD的时空变化趋势。为了管理由高维数据引起的计算负担,我们采用可扩展的贝叶斯模型,使用“分而治之”策略。这种方法允许快速模型拟合,并作为筛选时空模式的有效程序。此外,我们还分析了西部、中西部、南部和东北部以及城市和农村地区四个区域的趋势。IHD上的数据集存在缺失数据,提出了一种对缺失信息进行补全的方法。结果显示,2014年之后,美国IHD死亡率下降速度放缓,2019年之后略有上升。然而,县之间、四大地理区域之间、城乡之间存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast approach for analyzing spatio-temporal patterns in ischemic heart disease mortality across US counties (1999–2021)
Ischemic heart disease (IHD) remains the primary cause of mortality in the US. This study focuses on using spatio-temporal disease mapping models to explore the temporal trends of IHD at the county level from 1999 to 2021. To manage the computational burden arising from the high-dimensional data, we employ scalable Bayesian models using a “divide and conquer” strategy. This approach allows for fast model fitting and serves as an efficient procedure for screening spatio-temporal patterns. Additionally, we analyze trends in four regional subdivisions, West, Midwest, South and Northeast, and in urban and rural areas. The dataset on IHD contains missing data, and we propose a procedure to impute the omitted information. The results show a slowdown in the decrease of IHD mortality in the US after 2014 with a slight increase noted after 2019. However, differences exists among the counties, the four big geographical regions, and rural and urban areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信