Jack Cordes , Robert J. Glynn , Alexander M. Walker , Sebastian S. Schneeweiss
{"title":"医疗保险受益人采用二肽基肽酶-4抑制剂治疗2型糖尿病的地理空间分布","authors":"Jack Cordes , Robert J. Glynn , Alexander M. Walker , Sebastian S. Schneeweiss","doi":"10.1016/j.sste.2025.100711","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To characterize the geospatial distribution of the adoption of dipeptidyl-peptidase-4 inhibitor (DPP-4i) antidiabetics versus second generation sulfonylureas (SU).</div></div><div><h3>Methods</h3><div>Using Medicare claims data 2012–2017, two cohorts were built with new-users of either sitagliptin or saxagliptin each versus active comparator SU. For each ZIP Code tabulation area (ZCTA), the proportion DPP-4i prescribing was used in a local indicator of spatial association hotspot analysis. Multilevel logistic models were used to quantify the variation in medication use at the individual, ZCTA, state, and region levels.</div></div><div><h3>Results</h3><div>DPP-4i utilization proportion was low (sitagliptin median = 0.22; interquartile range 0.15 to 0.33; saxagliptin median = 0.025; 0.00 to 0.069). Clustering was observed for sitagliptin (Moran's <em>I</em> = 0.32) and saxagliptin (Moran's <em>I</em> = 0.20). States and ZCTAs accounted for 8.1 % and 13.3 % of variation in sitagliptin and saxagliptin prescribing, respectively.</div></div><div><h3>Conclusions</h3><div>Variation across ZCTAs suggests neighborhood factors may be important determinants of prescribing.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"52 ","pages":"Article 100711"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geospatial distribution of the adoption of dipeptidyl-peptidase-4 inhibitors for type 2 diabetes among Medicare beneficiaries\",\"authors\":\"Jack Cordes , Robert J. Glynn , Alexander M. Walker , Sebastian S. Schneeweiss\",\"doi\":\"10.1016/j.sste.2025.100711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To characterize the geospatial distribution of the adoption of dipeptidyl-peptidase-4 inhibitor (DPP-4i) antidiabetics versus second generation sulfonylureas (SU).</div></div><div><h3>Methods</h3><div>Using Medicare claims data 2012–2017, two cohorts were built with new-users of either sitagliptin or saxagliptin each versus active comparator SU. For each ZIP Code tabulation area (ZCTA), the proportion DPP-4i prescribing was used in a local indicator of spatial association hotspot analysis. Multilevel logistic models were used to quantify the variation in medication use at the individual, ZCTA, state, and region levels.</div></div><div><h3>Results</h3><div>DPP-4i utilization proportion was low (sitagliptin median = 0.22; interquartile range 0.15 to 0.33; saxagliptin median = 0.025; 0.00 to 0.069). Clustering was observed for sitagliptin (Moran's <em>I</em> = 0.32) and saxagliptin (Moran's <em>I</em> = 0.20). States and ZCTAs accounted for 8.1 % and 13.3 % of variation in sitagliptin and saxagliptin prescribing, respectively.</div></div><div><h3>Conclusions</h3><div>Variation across ZCTAs suggests neighborhood factors may be important determinants of prescribing.</div></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"52 \",\"pages\":\"Article 100711\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584525000024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584525000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
摘要
目的比较二肽基-肽酶-4抑制剂(DPP-4i)与二代磺脲类药物(SU)抗糖尿病药物的地理空间分布。方法利用2012-2017年医疗保险索赔数据,建立西格列汀或沙格列汀新使用者与有效比较药SU的两个队列,对每个邮政编码表列区(ZCTA),使用DPP-4i处方比例作为空间关联热点分析的局部指标。多层次逻辑模型用于量化个体、ZCTA、州和地区层面的药物使用变化。结果dpp -4i使用率低(西格列汀中位数= 0.22;四分位数范围0.15 ~ 0.33;沙格列汀中位数= 0.025;0.00至0.069)。西格列汀(Moran’s I = 0.32)和沙格列汀(Moran’s I = 0.20)呈聚类。各州和zcta分别占西格列汀和沙格列汀处方变化的8.1%和13.3%。结论zcta之间的差异表明邻里因素可能是处方的重要决定因素。
Geospatial distribution of the adoption of dipeptidyl-peptidase-4 inhibitors for type 2 diabetes among Medicare beneficiaries
Objective
To characterize the geospatial distribution of the adoption of dipeptidyl-peptidase-4 inhibitor (DPP-4i) antidiabetics versus second generation sulfonylureas (SU).
Methods
Using Medicare claims data 2012–2017, two cohorts were built with new-users of either sitagliptin or saxagliptin each versus active comparator SU. For each ZIP Code tabulation area (ZCTA), the proportion DPP-4i prescribing was used in a local indicator of spatial association hotspot analysis. Multilevel logistic models were used to quantify the variation in medication use at the individual, ZCTA, state, and region levels.
Results
DPP-4i utilization proportion was low (sitagliptin median = 0.22; interquartile range 0.15 to 0.33; saxagliptin median = 0.025; 0.00 to 0.069). Clustering was observed for sitagliptin (Moran's I = 0.32) and saxagliptin (Moran's I = 0.20). States and ZCTAs accounted for 8.1 % and 13.3 % of variation in sitagliptin and saxagliptin prescribing, respectively.
Conclusions
Variation across ZCTAs suggests neighborhood factors may be important determinants of prescribing.