Komi Mensah Agboka , Elfatih M. Abdel-Rahman , Daisy Salifu , Brian Kanji , Frank T. Ndjomatchoua , Ritter A.Y. Guimapi , Sunday Ekesi , Landmann Tobias
{"title":"结合自组织图(SOM)和卷积神经网络(CNN)提高模型精度:在疟疾病媒表型抗性中的应用","authors":"Komi Mensah Agboka , Elfatih M. Abdel-Rahman , Daisy Salifu , Brian Kanji , Frank T. Ndjomatchoua , Ritter A.Y. Guimapi , Sunday Ekesi , Landmann Tobias","doi":"10.1016/j.mex.2025.103198","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a hybrid approach that combines unsupervised self-organizing maps (SOM) with a supervised convolutional neural network (CNN) to enhance model accuracy in vector-borne disease modeling. We applied this method to predict insecticide resistance (IR) status in key malaria vectors across Africa. Our results show that the combined SOM/CNN approach is more robust than a standalone CNN model, achieving higher overall accuracy and Kappa scores among others. This confirms the potential of the SOM/CNN hybrid as an effective and reliable tool for improving model accuracy in public health applications.<ul><li><span>•</span><span><div>The hybrid model, combining SOM and CNN, was implemented to predict IR status in malaria vectors, providing enhanced accuracy across various validation metrics.</div></span></li><li><span>•</span><span><div>Results indicate a notable improvement in robustness and predictive accuracy over traditional CNN models.</div></span></li><li><span>•</span><span><div>The combined SOM/CNN approach demonstrated higher Kappa scores and overall model accuracy.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103198"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards combining self-organizing maps (SOM) and convolutional neural network (CNN) for improving model accuracy: Application to malaria vectors phenotypic resistance\",\"authors\":\"Komi Mensah Agboka , Elfatih M. Abdel-Rahman , Daisy Salifu , Brian Kanji , Frank T. Ndjomatchoua , Ritter A.Y. Guimapi , Sunday Ekesi , Landmann Tobias\",\"doi\":\"10.1016/j.mex.2025.103198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a hybrid approach that combines unsupervised self-organizing maps (SOM) with a supervised convolutional neural network (CNN) to enhance model accuracy in vector-borne disease modeling. We applied this method to predict insecticide resistance (IR) status in key malaria vectors across Africa. Our results show that the combined SOM/CNN approach is more robust than a standalone CNN model, achieving higher overall accuracy and Kappa scores among others. This confirms the potential of the SOM/CNN hybrid as an effective and reliable tool for improving model accuracy in public health applications.<ul><li><span>•</span><span><div>The hybrid model, combining SOM and CNN, was implemented to predict IR status in malaria vectors, providing enhanced accuracy across various validation metrics.</div></span></li><li><span>•</span><span><div>Results indicate a notable improvement in robustness and predictive accuracy over traditional CNN models.</div></span></li><li><span>•</span><span><div>The combined SOM/CNN approach demonstrated higher Kappa scores and overall model accuracy.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"14 \",\"pages\":\"Article 103198\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125000469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Towards combining self-organizing maps (SOM) and convolutional neural network (CNN) for improving model accuracy: Application to malaria vectors phenotypic resistance
This study introduces a hybrid approach that combines unsupervised self-organizing maps (SOM) with a supervised convolutional neural network (CNN) to enhance model accuracy in vector-borne disease modeling. We applied this method to predict insecticide resistance (IR) status in key malaria vectors across Africa. Our results show that the combined SOM/CNN approach is more robust than a standalone CNN model, achieving higher overall accuracy and Kappa scores among others. This confirms the potential of the SOM/CNN hybrid as an effective and reliable tool for improving model accuracy in public health applications.
•
The hybrid model, combining SOM and CNN, was implemented to predict IR status in malaria vectors, providing enhanced accuracy across various validation metrics.
•
Results indicate a notable improvement in robustness and predictive accuracy over traditional CNN models.
•
The combined SOM/CNN approach demonstrated higher Kappa scores and overall model accuracy.