用改进的adomian分解方案研究具有偏振模色散的三次四次光孤子

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-01-29 DOI:10.1016/j.mex.2025.103191
Afrah M. Almalki , A.A. AlQarni , H.O. Bakodah , A.A. Alshaery , Ahmed H. Arnous , Anjan Biswas
{"title":"用改进的adomian分解方案研究具有偏振模色散的三次四次光孤子","authors":"Afrah M. Almalki ,&nbsp;A.A. AlQarni ,&nbsp;H.O. Bakodah ,&nbsp;A.A. Alshaery ,&nbsp;Ahmed H. Arnous ,&nbsp;Anjan Biswas","doi":"10.1016/j.mex.2025.103191","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates the numerical computation of cubic-quartic optical solitons in birefringent fibers in accordance with Kerr's law. Utilizing the Improved Adomian Decomposition Method (IADM), the study improves the solution of complex-valued nonlinear evolution equations. It identifies a strong correlation between numerical results and earlier analytical soliton expressions from Zahran and Bekir. The analysis highlights impressively low computational errors, confirming IADM's effectiveness in delivering accurate solutions. This method decomposes both linear and nonlinear differential equations into simpler sub-problems, enabling the extraction of approximate analytical solutions without the need for linearization or perturbation techniques. IADM's adaptability suggests its potential for application in various domains, particularly in the optimization and design of optical communication systems.<ul><li><span>•</span><span><div>The research utilizes both the Adomian Decomposition Method (ADM) and its enhanced version (IADM) to solve the Gerdjikov-Ivanov equation.</div></span></li><li><span>•</span><span><div>Numerical simulations validate the accuracy and stability of these methods, with IADM showing superior convergence.</div></span></li><li><span>•</span><span><div>The study underscores the importance of these methods in improving optical communication systems and other nonlinear applications.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103191"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cubic-quartic optical solitons with polarization-mode dispersion by the improved adomian decomposition scheme\",\"authors\":\"Afrah M. Almalki ,&nbsp;A.A. AlQarni ,&nbsp;H.O. Bakodah ,&nbsp;A.A. Alshaery ,&nbsp;Ahmed H. Arnous ,&nbsp;Anjan Biswas\",\"doi\":\"10.1016/j.mex.2025.103191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research investigates the numerical computation of cubic-quartic optical solitons in birefringent fibers in accordance with Kerr's law. Utilizing the Improved Adomian Decomposition Method (IADM), the study improves the solution of complex-valued nonlinear evolution equations. It identifies a strong correlation between numerical results and earlier analytical soliton expressions from Zahran and Bekir. The analysis highlights impressively low computational errors, confirming IADM's effectiveness in delivering accurate solutions. This method decomposes both linear and nonlinear differential equations into simpler sub-problems, enabling the extraction of approximate analytical solutions without the need for linearization or perturbation techniques. IADM's adaptability suggests its potential for application in various domains, particularly in the optimization and design of optical communication systems.<ul><li><span>•</span><span><div>The research utilizes both the Adomian Decomposition Method (ADM) and its enhanced version (IADM) to solve the Gerdjikov-Ivanov equation.</div></span></li><li><span>•</span><span><div>Numerical simulations validate the accuracy and stability of these methods, with IADM showing superior convergence.</div></span></li><li><span>•</span><span><div>The study underscores the importance of these methods in improving optical communication systems and other nonlinear applications.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"14 \",\"pages\":\"Article 103191\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125000391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文根据克尔定律研究了双折射光纤中三次四次光孤子的数值计算。利用改进的Adomian分解方法(IADM)改进了复值非线性演化方程的求解。它确定了数值结果与Zahran和Bekir早期解析孤子表达式之间的强相关性。分析强调了令人印象深刻的低计算误差,证实了IADM在提供准确解决方案方面的有效性。该方法将线性和非线性微分方程分解为更简单的子问题,无需线性化或摄动技术即可提取近似解析解。IADM的适应性表明了它在各个领域的应用潜力,特别是在光通信系统的优化和设计方面。•本研究利用Adomian分解法(ADM)及其增强版(IADM)求解Gerdjikov-Ivanov方程。•数值模拟验证了这些方法的准确性和稳定性,IADM具有较好的收敛性。•该研究强调了这些方法在改进光通信系统和其他非线性应用中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cubic-quartic optical solitons with polarization-mode dispersion by the improved adomian decomposition scheme

Cubic-quartic optical solitons with polarization-mode dispersion by the improved adomian decomposition scheme
This research investigates the numerical computation of cubic-quartic optical solitons in birefringent fibers in accordance with Kerr's law. Utilizing the Improved Adomian Decomposition Method (IADM), the study improves the solution of complex-valued nonlinear evolution equations. It identifies a strong correlation between numerical results and earlier analytical soliton expressions from Zahran and Bekir. The analysis highlights impressively low computational errors, confirming IADM's effectiveness in delivering accurate solutions. This method decomposes both linear and nonlinear differential equations into simpler sub-problems, enabling the extraction of approximate analytical solutions without the need for linearization or perturbation techniques. IADM's adaptability suggests its potential for application in various domains, particularly in the optimization and design of optical communication systems.
  • The research utilizes both the Adomian Decomposition Method (ADM) and its enhanced version (IADM) to solve the Gerdjikov-Ivanov equation.
  • Numerical simulations validate the accuracy and stability of these methods, with IADM showing superior convergence.
  • The study underscores the importance of these methods in improving optical communication systems and other nonlinear applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信