用机器学习模型预测棉花冷胁迫反应基因

Mengke Zhang , Yayuan Deng , Wanghong Shi , Luyao Wang , Na Zhou , Heng Wang , Zhiyuan Zhang , Xueying Guan , Ting Zhao
{"title":"用机器学习模型预测棉花冷胁迫反应基因","authors":"Mengke Zhang ,&nbsp;Yayuan Deng ,&nbsp;Wanghong Shi ,&nbsp;Luyao Wang ,&nbsp;Na Zhou ,&nbsp;Heng Wang ,&nbsp;Zhiyuan Zhang ,&nbsp;Xueying Guan ,&nbsp;Ting Zhao","doi":"10.1016/j.cropd.2024.100085","DOIUrl":null,"url":null,"abstract":"<div><div>Machine Learning (ML) serves as a potent tool for data mining and predictive analytics in genomic research. However, its application in identifying stress-responsive genes remains underexplored. This study identified distinct variations in the expression patterns of one-to-one homologous genes responding to cold stress in three cotton species: <em>Gossypium hirsutum</em>, <em>Gossypium barbadense</em>, and <em>Gossypium arboreum</em>. To better understand cold-responsive genes, we developed ML predictive models (LightGBM, XGBoost, and Random Forest) utilizing 121 biochemical features. The incorporating of these features significantly enhanced model accuracy. Moreover, incorporating evolutionary information further refined the models, achieving an impressive 80.80 ​% accuracy in predicting cold-stress responsive genes. Notably, models trained on sequence features from <em>G. hirsutum</em> showed transferability to the closely related species of <em>G. barbadense</em>, with accuracies ranging from 78.65 ​% to 83.04 ​%. This research presents a promising workflow for identifying candidate genes for experimental exploration of cold stress responses and establishes a systematic framework for predicting cold-stress related genes using ML methodologies.</div></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"4 1","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting cold-stress responsive genes in cotton with machine learning models\",\"authors\":\"Mengke Zhang ,&nbsp;Yayuan Deng ,&nbsp;Wanghong Shi ,&nbsp;Luyao Wang ,&nbsp;Na Zhou ,&nbsp;Heng Wang ,&nbsp;Zhiyuan Zhang ,&nbsp;Xueying Guan ,&nbsp;Ting Zhao\",\"doi\":\"10.1016/j.cropd.2024.100085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine Learning (ML) serves as a potent tool for data mining and predictive analytics in genomic research. However, its application in identifying stress-responsive genes remains underexplored. This study identified distinct variations in the expression patterns of one-to-one homologous genes responding to cold stress in three cotton species: <em>Gossypium hirsutum</em>, <em>Gossypium barbadense</em>, and <em>Gossypium arboreum</em>. To better understand cold-responsive genes, we developed ML predictive models (LightGBM, XGBoost, and Random Forest) utilizing 121 biochemical features. The incorporating of these features significantly enhanced model accuracy. Moreover, incorporating evolutionary information further refined the models, achieving an impressive 80.80 ​% accuracy in predicting cold-stress responsive genes. Notably, models trained on sequence features from <em>G. hirsutum</em> showed transferability to the closely related species of <em>G. barbadense</em>, with accuracies ranging from 78.65 ​% to 83.04 ​%. This research presents a promising workflow for identifying candidate genes for experimental exploration of cold stress responses and establishes a systematic framework for predicting cold-stress related genes using ML methodologies.</div></div>\",\"PeriodicalId\":100341,\"journal\":{\"name\":\"Crop Design\",\"volume\":\"4 1\",\"pages\":\"Article 100085\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277289942400034X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277289942400034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)是基因组研究中数据挖掘和预测分析的有力工具。然而,它在识别应激反应基因方面的应用仍未得到充分探索。本研究确定了三种棉花(棉、棉和木棉)在冷胁迫下一对一同源基因表达模式的差异。为了更好地理解冷反应基因,我们利用121个生化特征开发了ML预测模型(LightGBM、XGBoost和Random Forest)。这些特征的结合显著提高了模型的精度。此外,结合进化信息进一步完善了模型,在预测冷应激反应基因方面达到了令人印象深刻的80.80%的准确率。值得注意的是,基于G. hirsutum序列特征训练的模型显示出与G. barbadense密切相关的物种的可转移性,准确率在78.65% ~ 83.04%之间。本研究提出了一种有前途的工作流程,用于鉴定冷应激反应实验探索的候选基因,并建立了一个使用ML方法预测冷应激相关基因的系统框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting cold-stress responsive genes in cotton with machine learning models
Machine Learning (ML) serves as a potent tool for data mining and predictive analytics in genomic research. However, its application in identifying stress-responsive genes remains underexplored. This study identified distinct variations in the expression patterns of one-to-one homologous genes responding to cold stress in three cotton species: Gossypium hirsutum, Gossypium barbadense, and Gossypium arboreum. To better understand cold-responsive genes, we developed ML predictive models (LightGBM, XGBoost, and Random Forest) utilizing 121 biochemical features. The incorporating of these features significantly enhanced model accuracy. Moreover, incorporating evolutionary information further refined the models, achieving an impressive 80.80 ​% accuracy in predicting cold-stress responsive genes. Notably, models trained on sequence features from G. hirsutum showed transferability to the closely related species of G. barbadense, with accuracies ranging from 78.65 ​% to 83.04 ​%. This research presents a promising workflow for identifying candidate genes for experimental exploration of cold stress responses and establishes a systematic framework for predicting cold-stress related genes using ML methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信