微通道中两个长度不等的受限液滴的聚结位置

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Wei Dong , Yuqing Zhao , Lei Tang , Liangkang Xie , Xiaoda Wang , Wei Du
{"title":"微通道中两个长度不等的受限液滴的聚结位置","authors":"Wei Dong ,&nbsp;Yuqing Zhao ,&nbsp;Lei Tang ,&nbsp;Liangkang Xie ,&nbsp;Xiaoda Wang ,&nbsp;Wei Du","doi":"10.1016/j.expthermflusci.2025.111419","DOIUrl":null,"url":null,"abstract":"<div><div>The coalescence of two droplets with unequal lengths through a head-to-rear collision in the microchannel with a double T-junction is an important passive method to construct droplet reactors. However, the accurate prediction of the coalescence position is still not achievable. This work aimed to explore the coalescence position by analyzing the droplet dynamics. Firstly, the velocity variation of the paired droplets moving in a straight microchannel was analyzed to divide the whole process into several stages. Then, based on the experimental investigations, mathematical models were developed to describe the distances of the droplet-pairs moving in each stage to predict the coalescence position in the straight microchannel. In addition, the coalescence position, as well as the coalescence mechanism, was analyzed for the paired droplets in an expansion microchannel to explore the more possibilities of intensifying the construction of droplet reactors in microchannels.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"163 ","pages":"Article 111419"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coalescence position of two confined droplets with unequal lengths in microchannels\",\"authors\":\"Wei Dong ,&nbsp;Yuqing Zhao ,&nbsp;Lei Tang ,&nbsp;Liangkang Xie ,&nbsp;Xiaoda Wang ,&nbsp;Wei Du\",\"doi\":\"10.1016/j.expthermflusci.2025.111419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The coalescence of two droplets with unequal lengths through a head-to-rear collision in the microchannel with a double T-junction is an important passive method to construct droplet reactors. However, the accurate prediction of the coalescence position is still not achievable. This work aimed to explore the coalescence position by analyzing the droplet dynamics. Firstly, the velocity variation of the paired droplets moving in a straight microchannel was analyzed to divide the whole process into several stages. Then, based on the experimental investigations, mathematical models were developed to describe the distances of the droplet-pairs moving in each stage to predict the coalescence position in the straight microchannel. In addition, the coalescence position, as well as the coalescence mechanism, was analyzed for the paired droplets in an expansion microchannel to explore the more possibilities of intensifying the construction of droplet reactors in microchannels.</div></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"163 \",\"pages\":\"Article 111419\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177725000135\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725000135","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

双t型结微通道中两个不等长的液滴通过前后碰撞聚并是构建液滴反应器的一种重要的被动方法。然而,对聚结位置的准确预测仍然无法实现。本工作旨在通过分析液滴动力学来探索聚结位置。首先,分析了成对液滴在直线微通道中运动的速度变化,将整个过程划分为几个阶段;然后,在实验研究的基础上,建立了描述液滴对在每个阶段运动距离的数学模型,以预测直线微通道中的聚结位置。此外,分析了膨胀微通道中成对液滴的聚结位置和聚结机理,探讨了加强微通道中液滴反应器建设的更多可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coalescence position of two confined droplets with unequal lengths in microchannels
The coalescence of two droplets with unequal lengths through a head-to-rear collision in the microchannel with a double T-junction is an important passive method to construct droplet reactors. However, the accurate prediction of the coalescence position is still not achievable. This work aimed to explore the coalescence position by analyzing the droplet dynamics. Firstly, the velocity variation of the paired droplets moving in a straight microchannel was analyzed to divide the whole process into several stages. Then, based on the experimental investigations, mathematical models were developed to describe the distances of the droplet-pairs moving in each stage to predict the coalescence position in the straight microchannel. In addition, the coalescence position, as well as the coalescence mechanism, was analyzed for the paired droplets in an expansion microchannel to explore the more possibilities of intensifying the construction of droplet reactors in microchannels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信