通过符合化蒙特卡罗dropout对不确定性量化的预测过程监测进行事后解释

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nijat Mehdiyev, Maxim Majlatow, Peter Fettke
{"title":"通过符合化蒙特卡罗dropout对不确定性量化的预测过程监测进行事后解释","authors":"Nijat Mehdiyev,&nbsp;Maxim Majlatow,&nbsp;Peter Fettke","doi":"10.1016/j.datak.2024.102402","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel approach to improve the transparency and reliability of deep learning models in predictive process monitoring (PPM) by integrating uncertainty quantification (UQ) and explainable artificial intelligence (XAI) techniques. We introduce the conformalized Monte Carlo dropout method, which combines Monte Carlo dropout for uncertainty estimation with conformal prediction (CP) to generate reliable prediction intervals. Additionally, we enhance post-hoc explanation techniques such as individual conditional expectation (ICE) plots and partial dependence plots (PDP) with uncertainty information, including credible and conformal predictive intervals. Our empirical evaluation in the manufacturing industry demonstrates the effectiveness of these approaches in refining strategic and operational decisions. This research contributes to advancing PPM and machine learning by bridging the gap between model transparency and high-stakes decision-making scenarios.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"156 ","pages":"Article 102402"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmenting post-hoc explanations for predictive process monitoring with uncertainty quantification via conformalized Monte Carlo dropout\",\"authors\":\"Nijat Mehdiyev,&nbsp;Maxim Majlatow,&nbsp;Peter Fettke\",\"doi\":\"10.1016/j.datak.2024.102402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel approach to improve the transparency and reliability of deep learning models in predictive process monitoring (PPM) by integrating uncertainty quantification (UQ) and explainable artificial intelligence (XAI) techniques. We introduce the conformalized Monte Carlo dropout method, which combines Monte Carlo dropout for uncertainty estimation with conformal prediction (CP) to generate reliable prediction intervals. Additionally, we enhance post-hoc explanation techniques such as individual conditional expectation (ICE) plots and partial dependence plots (PDP) with uncertainty information, including credible and conformal predictive intervals. Our empirical evaluation in the manufacturing industry demonstrates the effectiveness of these approaches in refining strategic and operational decisions. This research contributes to advancing PPM and machine learning by bridging the gap between model transparency and high-stakes decision-making scenarios.</div></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"156 \",\"pages\":\"Article 102402\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24001265\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24001265","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种通过整合不确定性量化(UQ)和可解释人工智能(XAI)技术来提高预测过程监测(PPM)中深度学习模型的透明度和可靠性的新方法。引入了保形蒙特卡罗dropout方法,该方法将蒙特卡罗dropout不确定性估计与保形预测(CP)相结合,生成可靠的预测区间。此外,我们还加强了事后解释技术,如具有不确定性信息的个体条件期望(ICE)图和部分依赖图(PDP),包括可信和保形预测区间。我们在制造业的实证评估证明了这些方法在改进战略和运营决策方面的有效性。这项研究通过弥合模型透明度和高风险决策场景之间的差距,有助于推进PPM和机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmenting post-hoc explanations for predictive process monitoring with uncertainty quantification via conformalized Monte Carlo dropout
This study presents a novel approach to improve the transparency and reliability of deep learning models in predictive process monitoring (PPM) by integrating uncertainty quantification (UQ) and explainable artificial intelligence (XAI) techniques. We introduce the conformalized Monte Carlo dropout method, which combines Monte Carlo dropout for uncertainty estimation with conformal prediction (CP) to generate reliable prediction intervals. Additionally, we enhance post-hoc explanation techniques such as individual conditional expectation (ICE) plots and partial dependence plots (PDP) with uncertainty information, including credible and conformal predictive intervals. Our empirical evaluation in the manufacturing industry demonstrates the effectiveness of these approaches in refining strategic and operational decisions. This research contributes to advancing PPM and machine learning by bridging the gap between model transparency and high-stakes decision-making scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信