具有局部Bregman散度的半参数密度估计

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Daisuke Matsuno , Kanta Naito
{"title":"具有局部Bregman散度的半参数密度估计","authors":"Daisuke Matsuno ,&nbsp;Kanta Naito","doi":"10.1016/j.jmva.2025.105419","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines semiparametric density estimation by combining a parametric crude guess and its nonparametric adjustment. The nonparametric adjustment is implemented via minimization of the localized Bregman divergence, which yields a broad class of semiparametric density estimators. Asymptotic theories of the density estimators in this general class are developed. Specific concrete forms of density estimators under a certain divergence and parametric guess are calculated. Simulations for several target densities and application to a real data set reveal that the proposed density estimators offer competitive or, in some cases, better performance compared to fully nonparametric kernel density estimator.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"207 ","pages":"Article 105419"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiparametric density estimation with localized Bregman divergence\",\"authors\":\"Daisuke Matsuno ,&nbsp;Kanta Naito\",\"doi\":\"10.1016/j.jmva.2025.105419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper examines semiparametric density estimation by combining a parametric crude guess and its nonparametric adjustment. The nonparametric adjustment is implemented via minimization of the localized Bregman divergence, which yields a broad class of semiparametric density estimators. Asymptotic theories of the density estimators in this general class are developed. Specific concrete forms of density estimators under a certain divergence and parametric guess are calculated. Simulations for several target densities and application to a real data set reveal that the proposed density estimators offer competitive or, in some cases, better performance compared to fully nonparametric kernel density estimator.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"207 \",\"pages\":\"Article 105419\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000144\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000144","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文通过结合参数粗估计及其非参数平差来研究半参数密度估计。非参数调整是通过最小化局域布雷格曼散度来实现的,这产生了一类广泛的半参数密度估计量。发展了这类密度估计量的渐近理论。计算了在一定散度和参数猜测下密度估计量的具体形式。对几个目标密度的模拟和对真实数据集的应用表明,与完全非参数核密度估计器相比,所提出的密度估计器具有竞争力,甚至在某些情况下性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiparametric density estimation with localized Bregman divergence
This paper examines semiparametric density estimation by combining a parametric crude guess and its nonparametric adjustment. The nonparametric adjustment is implemented via minimization of the localized Bregman divergence, which yields a broad class of semiparametric density estimators. Asymptotic theories of the density estimators in this general class are developed. Specific concrete forms of density estimators under a certain divergence and parametric guess are calculated. Simulations for several target densities and application to a real data set reveal that the proposed density estimators offer competitive or, in some cases, better performance compared to fully nonparametric kernel density estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信