时间序列的聚类。护理路径分析中的应用

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Thomas Guyet , Pierre Pinson , Enoal Gesny
{"title":"时间序列的聚类。护理路径分析中的应用","authors":"Thomas Guyet ,&nbsp;Pierre Pinson ,&nbsp;Enoal Gesny","doi":"10.1016/j.datak.2024.102401","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the future of healthcare starts by better understanding the current actual practices in . This motivates the objective of discovering typical care pathways from patient data. Revealing care pathways can be achieved through clustering. The difficulty in clustering care pathways, represented by sequences of timestamped events, lies in defining a semantically appropriate metric and clustering algorithms.</div><div>In this article, we adapt two methods developed for time series to the clustering of timed sequences: the drop-DTW metric and the DBA approach for the construction of averaged time sequences. These methods are then applied in clustering algorithms to propose original and sound clustering algorithms for timed sequences. This approach is experimented with and evaluated on synthetic and .</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"156 ","pages":"Article 102401"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering of timed sequences – Application to the analysis of care pathways\",\"authors\":\"Thomas Guyet ,&nbsp;Pierre Pinson ,&nbsp;Enoal Gesny\",\"doi\":\"10.1016/j.datak.2024.102401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving the future of healthcare starts by better understanding the current actual practices in . This motivates the objective of discovering typical care pathways from patient data. Revealing care pathways can be achieved through clustering. The difficulty in clustering care pathways, represented by sequences of timestamped events, lies in defining a semantically appropriate metric and clustering algorithms.</div><div>In this article, we adapt two methods developed for time series to the clustering of timed sequences: the drop-DTW metric and the DBA approach for the construction of averaged time sequences. These methods are then applied in clustering algorithms to propose original and sound clustering algorithms for timed sequences. This approach is experimented with and evaluated on synthetic and .</div></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"156 \",\"pages\":\"Article 102401\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24001253\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24001253","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

改善医疗保健的未来首先要更好地了解当前的实际做法。这激发了从患者数据中发现典型护理路径的目标。揭示护理途径可以通过聚类来实现。以时间戳事件序列表示的护理路径聚类的困难在于定义语义上适当的度量和聚类算法。在本文中,我们将为时间序列开发的两种方法用于时间序列的聚类:drop-DTW度量和用于构造平均时间序列的DBA方法。然后将这些方法应用于聚类算法中,提出了针对时间序列的原始和完善的聚类算法。并对该方法进行了实验和评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering of timed sequences – Application to the analysis of care pathways
Improving the future of healthcare starts by better understanding the current actual practices in . This motivates the objective of discovering typical care pathways from patient data. Revealing care pathways can be achieved through clustering. The difficulty in clustering care pathways, represented by sequences of timestamped events, lies in defining a semantically appropriate metric and clustering algorithms.
In this article, we adapt two methods developed for time series to the clustering of timed sequences: the drop-DTW metric and the DBA approach for the construction of averaged time sequences. These methods are then applied in clustering algorithms to propose original and sound clustering algorithms for timed sequences. This approach is experimented with and evaluated on synthetic and .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信