耦合MDL和马尔可夫链蒙特卡罗采样不同的模式集

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
François Camelin , Samir Loudni , Gilles Pesant , Charlotte Truchet
{"title":"耦合MDL和马尔可夫链蒙特卡罗采样不同的模式集","authors":"François Camelin ,&nbsp;Samir Loudni ,&nbsp;Gilles Pesant ,&nbsp;Charlotte Truchet","doi":"10.1016/j.datak.2024.102393","DOIUrl":null,"url":null,"abstract":"<div><div>Exhaustive methods of pattern extraction in a database face real obstacles to speed and output control of patterns: a large number of patterns are extracted, many of which are redundant. Pattern extraction methods through sampling, which allow for controlling the size of the outputs while ensuring fast response times, provide a solution to these two problems. However, these methods do not provide high-quality patterns: they return patterns that are very infrequent in the database. Furthermore, they do not scale. To ensure more frequent and diversified patterns in the output, we propose integrating compression methods into sampling to select the most representative patterns from the sampled transactions. We demonstrate that our approach improves the state of the art in terms of diversity of produced patterns.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"156 ","pages":"Article 102393"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling MDL and Markov chain Monte Carlo to sample diverse pattern sets\",\"authors\":\"François Camelin ,&nbsp;Samir Loudni ,&nbsp;Gilles Pesant ,&nbsp;Charlotte Truchet\",\"doi\":\"10.1016/j.datak.2024.102393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Exhaustive methods of pattern extraction in a database face real obstacles to speed and output control of patterns: a large number of patterns are extracted, many of which are redundant. Pattern extraction methods through sampling, which allow for controlling the size of the outputs while ensuring fast response times, provide a solution to these two problems. However, these methods do not provide high-quality patterns: they return patterns that are very infrequent in the database. Furthermore, they do not scale. To ensure more frequent and diversified patterns in the output, we propose integrating compression methods into sampling to select the most representative patterns from the sampled transactions. We demonstrate that our approach improves the state of the art in terms of diversity of produced patterns.</div></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"156 \",\"pages\":\"Article 102393\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24001174\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24001174","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数据库中详尽的模式提取方法在模式的速度和输出控制方面面临着真正的障碍:提取了大量的模式,其中许多是冗余的。通过采样的模式提取方法可以控制输出的大小,同时确保快速响应时间,为这两个问题提供了解决方案。然而,这些方法并不能提供高质量的模式:它们返回的模式在数据库中很少出现。此外,它们不能扩展。为了确保输出的模式更加频繁和多样化,我们建议将压缩方法集成到采样中,以从采样的事务中选择最具代表性的模式。我们证明了我们的方法在生成模式的多样性方面提高了技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling MDL and Markov chain Monte Carlo to sample diverse pattern sets
Exhaustive methods of pattern extraction in a database face real obstacles to speed and output control of patterns: a large number of patterns are extracted, many of which are redundant. Pattern extraction methods through sampling, which allow for controlling the size of the outputs while ensuring fast response times, provide a solution to these two problems. However, these methods do not provide high-quality patterns: they return patterns that are very infrequent in the database. Furthermore, they do not scale. To ensure more frequent and diversified patterns in the output, we propose integrating compression methods into sampling to select the most representative patterns from the sampled transactions. We demonstrate that our approach improves the state of the art in terms of diversity of produced patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信