电弧直接能量沉积制备奥氏体钢双金属组织及其力学性能研究

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rupendra Singh Tanwar, Suyog Jhavar
{"title":"电弧直接能量沉积制备奥氏体钢双金属组织及其力学性能研究","authors":"Rupendra Singh Tanwar,&nbsp;Suyog Jhavar","doi":"10.1016/j.jajp.2025.100287","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, bimetallic structures of two austenitic steels (SS316L and SS309) were fabricated using wire arc Direct Energy Deposition (DED). The fabrication process involved in the strategy of SS316L-SS309-SS316L on an SS316L substrate sequentially. Each material deposited 10 layers to one over another and forming two interfaces. Subsequently, the microstructure and mechanical properties, were evaluated in the deposited materials and at their interface. The microstructure predominantly consisted of the austenitic (γ) phase with a minimal amount of δ-ferrite phases in both stainless steels. The elemental distribution confirmed through EDS and verified by the Schaeffler diagram. SS309 exhibited a higher δ ferrite content compared to SS316L, and the interfaces showed a δ-ferrite content between the two base metals, the δ-ferrite mitigate the issue of hot cracking which occurred generally in the austenitic steels. The hardness ranged from 206 to 289 Vickers hardness (HV), with a considerable increase at the interface due to concentration of δ ferrite. The yield and ultimate tensile strengths were higher in the bimetallic samples tested in the build direction compared to the deposition direction with minimal variation indicating low anisotropy in mechanical properties. Tensile fracture results showed dimples, deep dimples, and microcracks, with failures occurring on the SS316L side. These findings demonstrate the effectiveness of the wire arc DED process in fabricating of bimetallic structure of SS316L-SS309 with improved strength.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100287"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of microstructure and mechanical properties of austenitic steel bimetallic structures fabricated using wire arc direct energy deposition for remanufacturing applications\",\"authors\":\"Rupendra Singh Tanwar,&nbsp;Suyog Jhavar\",\"doi\":\"10.1016/j.jajp.2025.100287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, bimetallic structures of two austenitic steels (SS316L and SS309) were fabricated using wire arc Direct Energy Deposition (DED). The fabrication process involved in the strategy of SS316L-SS309-SS316L on an SS316L substrate sequentially. Each material deposited 10 layers to one over another and forming two interfaces. Subsequently, the microstructure and mechanical properties, were evaluated in the deposited materials and at their interface. The microstructure predominantly consisted of the austenitic (γ) phase with a minimal amount of δ-ferrite phases in both stainless steels. The elemental distribution confirmed through EDS and verified by the Schaeffler diagram. SS309 exhibited a higher δ ferrite content compared to SS316L, and the interfaces showed a δ-ferrite content between the two base metals, the δ-ferrite mitigate the issue of hot cracking which occurred generally in the austenitic steels. The hardness ranged from 206 to 289 Vickers hardness (HV), with a considerable increase at the interface due to concentration of δ ferrite. The yield and ultimate tensile strengths were higher in the bimetallic samples tested in the build direction compared to the deposition direction with minimal variation indicating low anisotropy in mechanical properties. Tensile fracture results showed dimples, deep dimples, and microcracks, with failures occurring on the SS316L side. These findings demonstrate the effectiveness of the wire arc DED process in fabricating of bimetallic structure of SS316L-SS309 with improved strength.</div></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"11 \",\"pages\":\"Article 100287\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330925000081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用电弧直接能量沉积法(DED)制备了两种奥氏体钢(SS316L和SS309)的双金属结构。在SS316L衬底上依次进行SS316L- ss309 -SS316L的制造工艺。每种材料沉积10层,形成两个界面。随后,对沉积材料及其界面的微观结构和力学性能进行了评价。两种不锈钢的显微组织主要由奥氏体(γ)相和少量的δ铁素体相组成。元素分布经能谱分析证实,并经舍弗勒图验证。SS309比SS316L具有更高的δ铁素体含量,两种基体金属之间的界面存在δ铁素体含量,δ铁素体的存在缓解了奥氏体钢普遍存在的热裂问题。合金的硬度范围为206 ~ 289维氏硬度(HV),界面处δ铁素体的加入使合金硬度显著提高。与沉积方向相比,在构建方向测试的双金属样品的屈服强度和极限拉伸强度更高,且变化最小,表明力学性能的各向异性较低。拉伸断裂结果显示为韧窝、深韧窝和微裂纹,破坏发生在SS316L侧。这些结果证明了电弧DED工艺在制备SS316L-SS309双金属结构和提高强度方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of microstructure and mechanical properties of austenitic steel bimetallic structures fabricated using wire arc direct energy deposition for remanufacturing applications
In this work, bimetallic structures of two austenitic steels (SS316L and SS309) were fabricated using wire arc Direct Energy Deposition (DED). The fabrication process involved in the strategy of SS316L-SS309-SS316L on an SS316L substrate sequentially. Each material deposited 10 layers to one over another and forming two interfaces. Subsequently, the microstructure and mechanical properties, were evaluated in the deposited materials and at their interface. The microstructure predominantly consisted of the austenitic (γ) phase with a minimal amount of δ-ferrite phases in both stainless steels. The elemental distribution confirmed through EDS and verified by the Schaeffler diagram. SS309 exhibited a higher δ ferrite content compared to SS316L, and the interfaces showed a δ-ferrite content between the two base metals, the δ-ferrite mitigate the issue of hot cracking which occurred generally in the austenitic steels. The hardness ranged from 206 to 289 Vickers hardness (HV), with a considerable increase at the interface due to concentration of δ ferrite. The yield and ultimate tensile strengths were higher in the bimetallic samples tested in the build direction compared to the deposition direction with minimal variation indicating low anisotropy in mechanical properties. Tensile fracture results showed dimples, deep dimples, and microcracks, with failures occurring on the SS316L side. These findings demonstrate the effectiveness of the wire arc DED process in fabricating of bimetallic structure of SS316L-SS309 with improved strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信