AA7075-T6复合薄板补焊FSSW刀具排序动力学的热-力学和材料流动特性:基于无网格光滑颗粒流体力学方法的数值分析

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Venkata Somi Reddy Janga, Mokhtar Awang, Nabihah Sallih, Tamiru Alemu Lemma
{"title":"AA7075-T6复合薄板补焊FSSW刀具排序动力学的热-力学和材料流动特性:基于无网格光滑颗粒流体力学方法的数值分析","authors":"Venkata Somi Reddy Janga,&nbsp;Mokhtar Awang,&nbsp;Nabihah Sallih,&nbsp;Tamiru Alemu Lemma","doi":"10.1016/j.jajp.2025.100285","DOIUrl":null,"url":null,"abstract":"<div><div>This study is focused on improving the joint strength of AA7075-T6 specimens with aluminium cladding (alclad) joined through the refill friction stir spot welding (RFSSW) process. The bonding ligament weakens the RFSSW joint because the alclad layer is trapped between the specimens. This layer hinders material mixing during welding and creates a weak interface prone to crack initiation and propagation during external loading, affecting joint integrity. To overcome this problem, a novel tool sequencing variant of RFSSW, the pin plunging reinforced RFSSW (PPRSP-RFSSW), is proposed. A smoothed-particle hydrodynamics (SPH) formulation-based 3D thermo-mechanical model is developed to study the thermo-mechanical and material flow properties as it is possible to trace the field variables explicitly; it can manage significant material/elemental deformations and capture material mixing dynamically. The PPRSP-RFSSW is numerically analyzed and compared to existing sleeve plunging RFSSW (SP-RFSSW). The numerical model's accuracy was tested by comparing temperatures to experimental temperature data in published papers, and the results corresponded well. Comparisons are made between the SP-RFSSW and PPRSP-RFSSW concerning their heat distribution, plasticization, and material flow. Enhanced material mixing and plasticization were observed through PPRSP-RFSSW, and this tool sequencing is recommended for joining alclad AA7075-T6 specimens.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100285"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-mechanical and material flow characteristics of tool sequencing dynamics in refill FSSW of thin alclad AA7075-T6 sheets: Numerical analysis using meshless smoothed-particle hydrodynamics method\",\"authors\":\"Venkata Somi Reddy Janga,&nbsp;Mokhtar Awang,&nbsp;Nabihah Sallih,&nbsp;Tamiru Alemu Lemma\",\"doi\":\"10.1016/j.jajp.2025.100285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study is focused on improving the joint strength of AA7075-T6 specimens with aluminium cladding (alclad) joined through the refill friction stir spot welding (RFSSW) process. The bonding ligament weakens the RFSSW joint because the alclad layer is trapped between the specimens. This layer hinders material mixing during welding and creates a weak interface prone to crack initiation and propagation during external loading, affecting joint integrity. To overcome this problem, a novel tool sequencing variant of RFSSW, the pin plunging reinforced RFSSW (PPRSP-RFSSW), is proposed. A smoothed-particle hydrodynamics (SPH) formulation-based 3D thermo-mechanical model is developed to study the thermo-mechanical and material flow properties as it is possible to trace the field variables explicitly; it can manage significant material/elemental deformations and capture material mixing dynamically. The PPRSP-RFSSW is numerically analyzed and compared to existing sleeve plunging RFSSW (SP-RFSSW). The numerical model's accuracy was tested by comparing temperatures to experimental temperature data in published papers, and the results corresponded well. Comparisons are made between the SP-RFSSW and PPRSP-RFSSW concerning their heat distribution, plasticization, and material flow. Enhanced material mixing and plasticization were observed through PPRSP-RFSSW, and this tool sequencing is recommended for joining alclad AA7075-T6 specimens.</div></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"11 \",\"pages\":\"Article 100285\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330925000068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是通过再填充搅拌摩擦点焊(RFSSW)工艺提高铝包层(alclad)连接AA7075-T6试样的连接强度。由于合金层被困在试样之间,结合韧带使RFSSW关节减弱。这一层阻碍了焊接过程中材料的混合,并在外部加载过程中形成一个脆弱的界面,容易产生裂纹,影响接头的完整性。为了克服这一问题,提出了一种新的RFSSW刀具排序变体——插针增强RFSSW (PPRSP-RFSSW)。建立了基于光滑颗粒流体力学(SPH)公式的三维热力学模型,以研究热力学和材料流动特性,因为它可以明确地跟踪场变量;它可以管理显著的材料/元素变形和捕获材料混合动态。对PPRSP-RFSSW进行了数值分析,并与现有的滑套插入式RFSSW (SP-RFSSW)进行了比较。通过与已发表论文的实验温度数据对比,验证了数值模型的准确性,结果吻合较好。对SP-RFSSW和PPRSP-RFSSW的热分布、塑化和物料流动进行了比较。通过PPRSP-RFSSW观察到增强的材料混合和塑化,推荐使用该工具测序加入alclad AA7075-T6样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermo-mechanical and material flow characteristics of tool sequencing dynamics in refill FSSW of thin alclad AA7075-T6 sheets: Numerical analysis using meshless smoothed-particle hydrodynamics method
This study is focused on improving the joint strength of AA7075-T6 specimens with aluminium cladding (alclad) joined through the refill friction stir spot welding (RFSSW) process. The bonding ligament weakens the RFSSW joint because the alclad layer is trapped between the specimens. This layer hinders material mixing during welding and creates a weak interface prone to crack initiation and propagation during external loading, affecting joint integrity. To overcome this problem, a novel tool sequencing variant of RFSSW, the pin plunging reinforced RFSSW (PPRSP-RFSSW), is proposed. A smoothed-particle hydrodynamics (SPH) formulation-based 3D thermo-mechanical model is developed to study the thermo-mechanical and material flow properties as it is possible to trace the field variables explicitly; it can manage significant material/elemental deformations and capture material mixing dynamically. The PPRSP-RFSSW is numerically analyzed and compared to existing sleeve plunging RFSSW (SP-RFSSW). The numerical model's accuracy was tested by comparing temperatures to experimental temperature data in published papers, and the results corresponded well. Comparisons are made between the SP-RFSSW and PPRSP-RFSSW concerning their heat distribution, plasticization, and material flow. Enhanced material mixing and plasticization were observed through PPRSP-RFSSW, and this tool sequencing is recommended for joining alclad AA7075-T6 specimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信