{"title":"一种用于旋转机械故障诊断的卷积-变压器强化学习代理","authors":"Zhenning Li, Hongkai Jiang, Yutong Dong","doi":"10.1016/j.eswa.2025.126669","DOIUrl":null,"url":null,"abstract":"<div><div>In the maintenance and management of rotating machinery, vibration signals during operation can reflect the health status of the system. Deep learning algorithms have enabled automatic feature extraction in vibration monitoring and diagnostic technologies, gaining widespread recognition in intelligent equipment management, though some limitations still exist. To improve model performance under limited sample scenarios and incorporate continuously optimizable strategies, this study introduces LiteDPER-CTQN (Lightweight Double Prioritized Experience Replay with Convolutional Transformer Q-Network), a novel fault diagnosis agent incorporating reinforcement learning. The agent demonstrates superior feature extraction and model adaptation through three key innovations: a lightweight reinforcement learning framework ensuring efficient and stable training, an enhanced Transformer-based architecture enabling multi-scale feature fusion, and an integrated intelligent diagnosis system. Experimental results on both bench tests and electric locomotive data demonstrate that our method achieves higher diagnosis accuracy, faster convergence, and lower computational resource consumption compared to state-of-the-art approaches, while the visualization of the Q-value function enhances the interpretability of the decision-making process.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"271 ","pages":"Article 126669"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A convolutional-transformer reinforcement learning agent for rotating machinery fault diagnosis\",\"authors\":\"Zhenning Li, Hongkai Jiang, Yutong Dong\",\"doi\":\"10.1016/j.eswa.2025.126669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the maintenance and management of rotating machinery, vibration signals during operation can reflect the health status of the system. Deep learning algorithms have enabled automatic feature extraction in vibration monitoring and diagnostic technologies, gaining widespread recognition in intelligent equipment management, though some limitations still exist. To improve model performance under limited sample scenarios and incorporate continuously optimizable strategies, this study introduces LiteDPER-CTQN (Lightweight Double Prioritized Experience Replay with Convolutional Transformer Q-Network), a novel fault diagnosis agent incorporating reinforcement learning. The agent demonstrates superior feature extraction and model adaptation through three key innovations: a lightweight reinforcement learning framework ensuring efficient and stable training, an enhanced Transformer-based architecture enabling multi-scale feature fusion, and an integrated intelligent diagnosis system. Experimental results on both bench tests and electric locomotive data demonstrate that our method achieves higher diagnosis accuracy, faster convergence, and lower computational resource consumption compared to state-of-the-art approaches, while the visualization of the Q-value function enhances the interpretability of the decision-making process.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"271 \",\"pages\":\"Article 126669\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095741742500291X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741742500291X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A convolutional-transformer reinforcement learning agent for rotating machinery fault diagnosis
In the maintenance and management of rotating machinery, vibration signals during operation can reflect the health status of the system. Deep learning algorithms have enabled automatic feature extraction in vibration monitoring and diagnostic technologies, gaining widespread recognition in intelligent equipment management, though some limitations still exist. To improve model performance under limited sample scenarios and incorporate continuously optimizable strategies, this study introduces LiteDPER-CTQN (Lightweight Double Prioritized Experience Replay with Convolutional Transformer Q-Network), a novel fault diagnosis agent incorporating reinforcement learning. The agent demonstrates superior feature extraction and model adaptation through three key innovations: a lightweight reinforcement learning framework ensuring efficient and stable training, an enhanced Transformer-based architecture enabling multi-scale feature fusion, and an integrated intelligent diagnosis system. Experimental results on both bench tests and electric locomotive data demonstrate that our method achieves higher diagnosis accuracy, faster convergence, and lower computational resource consumption compared to state-of-the-art approaches, while the visualization of the Q-value function enhances the interpretability of the decision-making process.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.