结构消防工程的基于可靠性的安全格式。基于最可能失效点的推导

Ruben Van Coile, Balša Jovanović, Florian Put
{"title":"结构消防工程的基于可靠性的安全格式。基于最可能失效点的推导","authors":"Ruben Van Coile,&nbsp;Balša Jovanović,&nbsp;Florian Put","doi":"10.1016/j.iintel.2024.100125","DOIUrl":null,"url":null,"abstract":"<div><div>Designing structures for burnout resistance ensures stability during evacuation and search and rescue operations, limits collateral damage, and enhances post-fire repairability. This represents a significant shift from traditional prescriptive designs that do not evaluate performance under realistic fire conditions. However, given the variability in fire exposure and structural response, it is unclear which input values should be used to ensure a high level of reliability for burnout calculations. This paper introduces a safety format for burnout resistance compatible with the Eurocode and its reliability principles. The format allows users to specify desired reliability levels and prescribes equations for determining design values for load effects and fire load density using predetermined sensitivity weights. A method for calculating default sensitivity weights is outlined, proposing tentative values: 0.65 for resistance effect, −0.40 for load effect, and −0.80 for fire load density, with a default coefficient of variation of 0.30 for resistance effect when case-specific information is lacking. The safety format's performance is verified through case studies of a concrete slab and a numerical evaluation of a steel column, showing satisfactory and conservatively assessed results. Inherent conservatism in the design format may, however, occasionally lead to the undue rejection of designs. Further investigations are necessary to confirm the safety format's conceptualization, default sensitivity weights, and the influence of the adopted compartment fire model.</div></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"4 1","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability-based safety format for structural fire engineering – Derivation based on the most likely failure point\",\"authors\":\"Ruben Van Coile,&nbsp;Balša Jovanović,&nbsp;Florian Put\",\"doi\":\"10.1016/j.iintel.2024.100125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing structures for burnout resistance ensures stability during evacuation and search and rescue operations, limits collateral damage, and enhances post-fire repairability. This represents a significant shift from traditional prescriptive designs that do not evaluate performance under realistic fire conditions. However, given the variability in fire exposure and structural response, it is unclear which input values should be used to ensure a high level of reliability for burnout calculations. This paper introduces a safety format for burnout resistance compatible with the Eurocode and its reliability principles. The format allows users to specify desired reliability levels and prescribes equations for determining design values for load effects and fire load density using predetermined sensitivity weights. A method for calculating default sensitivity weights is outlined, proposing tentative values: 0.65 for resistance effect, −0.40 for load effect, and −0.80 for fire load density, with a default coefficient of variation of 0.30 for resistance effect when case-specific information is lacking. The safety format's performance is verified through case studies of a concrete slab and a numerical evaluation of a steel column, showing satisfactory and conservatively assessed results. Inherent conservatism in the design format may, however, occasionally lead to the undue rejection of designs. Further investigations are necessary to confirm the safety format's conceptualization, default sensitivity weights, and the influence of the adopted compartment fire model.</div></div>\",\"PeriodicalId\":100791,\"journal\":{\"name\":\"Journal of Infrastructure Intelligence and Resilience\",\"volume\":\"4 1\",\"pages\":\"Article 100125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrastructure Intelligence and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772991524000446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991524000446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计抗燃结构可确保疏散和搜救行动中的稳定性,限制附带损害,并提高火灾后的可修复性。这代表了传统规范设计的重大转变,这些设计不评估实际火灾条件下的性能。然而,考虑到火灾暴露和结构反应的可变性,目前尚不清楚应该使用哪些输入值来确保燃尽计算的高可靠性。本文介绍了一种符合欧洲规范的耐烧毁安全格式及其可靠性原则。该格式允许用户指定所需的可靠性水平,并规定了使用预定灵敏度权重确定负载影响和火灾负载密度的设计值的公式。本文概述了一种计算默认敏感性权重的方法,提出了暂定值:电阻效应为0.65,负载效应为- 0.40,火灾负荷密度为- 0.80,当缺乏具体情况信息时,电阻效应的默认变异系数为0.30。通过混凝土板的实例研究和钢柱的数值评估,验证了该安全格式的性能,得出了令人满意和保守的评估结果。然而,设计格式中固有的保守性偶尔会导致设计的不当拒绝。需要进一步的研究来确定安全格式的概念、默认敏感性权重以及所采用的隔室火灾模型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability-based safety format for structural fire engineering – Derivation based on the most likely failure point
Designing structures for burnout resistance ensures stability during evacuation and search and rescue operations, limits collateral damage, and enhances post-fire repairability. This represents a significant shift from traditional prescriptive designs that do not evaluate performance under realistic fire conditions. However, given the variability in fire exposure and structural response, it is unclear which input values should be used to ensure a high level of reliability for burnout calculations. This paper introduces a safety format for burnout resistance compatible with the Eurocode and its reliability principles. The format allows users to specify desired reliability levels and prescribes equations for determining design values for load effects and fire load density using predetermined sensitivity weights. A method for calculating default sensitivity weights is outlined, proposing tentative values: 0.65 for resistance effect, −0.40 for load effect, and −0.80 for fire load density, with a default coefficient of variation of 0.30 for resistance effect when case-specific information is lacking. The safety format's performance is verified through case studies of a concrete slab and a numerical evaluation of a steel column, showing satisfactory and conservatively assessed results. Inherent conservatism in the design format may, however, occasionally lead to the undue rejection of designs. Further investigations are necessary to confirm the safety format's conceptualization, default sensitivity weights, and the influence of the adopted compartment fire model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信