非奇异项(t应力)对脆性材料I/III型开裂参数的影响,采用大理岩不同梁形和盘形试样进行数值和试验研究

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Amir Mousavi , M.R.M. Aliha , Hadi Khoramishad , Hamid Reza Karimi
{"title":"非奇异项(t应力)对脆性材料I/III型开裂参数的影响,采用大理岩不同梁形和盘形试样进行数值和试验研究","authors":"Amir Mousavi ,&nbsp;M.R.M. Aliha ,&nbsp;Hadi Khoramishad ,&nbsp;Hamid Reza Karimi","doi":"10.1016/j.finmec.2024.100303","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on less-studied mode I/III fracture cracking behaviour. Seven specimens (ENDC, DNDC, SCB, ENDB, ATPB, TPB-IC, and SENB) were analyzed numerically and experimentally. Results show in pure mode-I, the specimens show identical <em>K</em><sub>Ic</sub> values (1.22 to 1.54 MPa√m). Especially if the <em>K</em><sub>Ic</sub> was measured by compressive specimens (ENDC and DNDC with <em>K</em><sub>Ic</sub> of 1.22 and 1.30 MPa√m, respectively) and was neglected. In these cases, the difference in measured <em>K</em><sub>Ic</sub> values directly relates to the <em>T</em>-stress value in pure mode-I. So, higher T-stress values increase the <em>K</em><sub>Ic</sub> and vice versa. In pure mode-III, which can only simulated by ENDB, ENDC, and DNDC specimens, the difference in measured <em>K</em><sub>IIIc</sub> values was enormous, as 0.99 MPa√m for ENDB, 2.0 MPa√m for ENDC and 2.53 MPa√m for DNDC. Comparing the trend of <em>K</em><sub>IIIc</sub> for specimens shows the same as <em>K</em><sub>Ic</sub>, <em>K</em><sub>IIIc</sub> also has a direct relation with the T-stress. The affectability of fracture toughness from <em>T</em>-stress shows the importance of accounting for it in calculations. The trends show that the ENDB, ENDC, and DNDC specimens have considerably negative <em>T</em>-stress values, with different trends. Moving from pure mode-I to pure mode-III, the ENDB has a low-negative T-stress that becomes high-negative (about -0.32 to -2.5 MPa). Meanwhile, of DNDC, it is the opposite; the T-stress is high-negative for pure mode-I and becomes low-negative for pure mode-III (about -2.54 to -0.77 MPa). For ENDC, the <em>T</em>-stress is almost constant moderate-negative in all the mixed mode I/III conditions (about -2.1 MPa).</div></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"18 ","pages":"Article 100303"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of non-singular term (T-stress) on mode I/III cracking parameters of brittle materials, Numerical and experimental study using different beam and disc shape specimens made of marble rock\",\"authors\":\"Amir Mousavi ,&nbsp;M.R.M. Aliha ,&nbsp;Hadi Khoramishad ,&nbsp;Hamid Reza Karimi\",\"doi\":\"10.1016/j.finmec.2024.100303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on less-studied mode I/III fracture cracking behaviour. Seven specimens (ENDC, DNDC, SCB, ENDB, ATPB, TPB-IC, and SENB) were analyzed numerically and experimentally. Results show in pure mode-I, the specimens show identical <em>K</em><sub>Ic</sub> values (1.22 to 1.54 MPa√m). Especially if the <em>K</em><sub>Ic</sub> was measured by compressive specimens (ENDC and DNDC with <em>K</em><sub>Ic</sub> of 1.22 and 1.30 MPa√m, respectively) and was neglected. In these cases, the difference in measured <em>K</em><sub>Ic</sub> values directly relates to the <em>T</em>-stress value in pure mode-I. So, higher T-stress values increase the <em>K</em><sub>Ic</sub> and vice versa. In pure mode-III, which can only simulated by ENDB, ENDC, and DNDC specimens, the difference in measured <em>K</em><sub>IIIc</sub> values was enormous, as 0.99 MPa√m for ENDB, 2.0 MPa√m for ENDC and 2.53 MPa√m for DNDC. Comparing the trend of <em>K</em><sub>IIIc</sub> for specimens shows the same as <em>K</em><sub>Ic</sub>, <em>K</em><sub>IIIc</sub> also has a direct relation with the T-stress. The affectability of fracture toughness from <em>T</em>-stress shows the importance of accounting for it in calculations. The trends show that the ENDB, ENDC, and DNDC specimens have considerably negative <em>T</em>-stress values, with different trends. Moving from pure mode-I to pure mode-III, the ENDB has a low-negative T-stress that becomes high-negative (about -0.32 to -2.5 MPa). Meanwhile, of DNDC, it is the opposite; the T-stress is high-negative for pure mode-I and becomes low-negative for pure mode-III (about -2.54 to -0.77 MPa). For ENDC, the <em>T</em>-stress is almost constant moderate-negative in all the mixed mode I/III conditions (about -2.1 MPa).</div></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":\"18 \",\"pages\":\"Article 100303\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359724000490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359724000490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的重点是研究较少的I/III型断裂开裂行为。对7种样品(ENDC、DNDC、SCB、ENDB、ATPB、TPB-IC和SENB)进行了数值和实验分析。结果表明,纯i型试样的KIc值相同(1.22 ~ 1.54 MPa / m)。特别是当KIc是通过压缩试样测量时(ENDC和DNDC的KIc分别为1.22和1.30 MPa / m),而忽略了KIc。在这些情况下,测量到的KIc值的差异与纯模式i下的t应力值直接相关。因此,较高的t应力值会增加KIc,反之亦然。在仅能通过ENDB、ENDC和DNDC试件模拟的纯模式iii中,测量到的KIIIc值差异巨大,ENDB为0.99 MPa√m, ENDC为2.0 MPa√m, DNDC为2.53 MPa√m。对比试件KIIIc的变化趋势与KIc相同,KIIIc与t应力也有直接关系。t应力对断裂韧性的影响表明了在计算中考虑这一影响的重要性。趋势表明,ENDB、ENDC和DNDC试件的t应力值均为负,但趋势不同。从纯模式i到纯模式iii, ENDB具有低负t应力,变为高负t应力(约为-0.32至-2.5 MPa)。与此同时,对于ddc,情况正好相反;纯模式i的t应力为高负,纯模式iii的t应力为低负(约为-2.54 ~ -0.77 MPa)。对于ENDC,在所有I/III混合模式条件下,t应力几乎恒定为中负(约为-2.1 MPa)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of non-singular term (T-stress) on mode I/III cracking parameters of brittle materials, Numerical and experimental study using different beam and disc shape specimens made of marble rock
This study focuses on less-studied mode I/III fracture cracking behaviour. Seven specimens (ENDC, DNDC, SCB, ENDB, ATPB, TPB-IC, and SENB) were analyzed numerically and experimentally. Results show in pure mode-I, the specimens show identical KIc values (1.22 to 1.54 MPa√m). Especially if the KIc was measured by compressive specimens (ENDC and DNDC with KIc of 1.22 and 1.30 MPa√m, respectively) and was neglected. In these cases, the difference in measured KIc values directly relates to the T-stress value in pure mode-I. So, higher T-stress values increase the KIc and vice versa. In pure mode-III, which can only simulated by ENDB, ENDC, and DNDC specimens, the difference in measured KIIIc values was enormous, as 0.99 MPa√m for ENDB, 2.0 MPa√m for ENDC and 2.53 MPa√m for DNDC. Comparing the trend of KIIIc for specimens shows the same as KIc, KIIIc also has a direct relation with the T-stress. The affectability of fracture toughness from T-stress shows the importance of accounting for it in calculations. The trends show that the ENDB, ENDC, and DNDC specimens have considerably negative T-stress values, with different trends. Moving from pure mode-I to pure mode-III, the ENDB has a low-negative T-stress that becomes high-negative (about -0.32 to -2.5 MPa). Meanwhile, of DNDC, it is the opposite; the T-stress is high-negative for pure mode-I and becomes low-negative for pure mode-III (about -2.54 to -0.77 MPa). For ENDC, the T-stress is almost constant moderate-negative in all the mixed mode I/III conditions (about -2.1 MPa).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信