旋转双金属链体系中的等离子体杂化

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Nan Gao, Haoran Liu, Yongqi Chen and Yurui Fang*, 
{"title":"旋转双金属链体系中的等离子体杂化","authors":"Nan Gao,&nbsp;Haoran Liu,&nbsp;Yongqi Chen and Yurui Fang*,&nbsp;","doi":"10.1021/acs.jpcc.4c0798810.1021/acs.jpcc.4c07988","DOIUrl":null,"url":null,"abstract":"<p >Plasmon hybridization phenomena in metallic chain heterodimers represent a frontier in nanoscale optoelectronic research, offering insights into the quantum mechanisms that govern their behavior. Utilizing first-principles-based computational methods, we conduct a systematic study into the dimer configurations formed by Na<sub>8</sub> and Mg<sub>8</sub> chains, encompassing Na<sub>8</sub> homodimer, Mg<sub>8</sub> homodimer, and Na<sub>8</sub>Mg<sub>8</sub> heterodimer. The study reveals that with the variation of bichain rotation angles, the plasmonic resonance modes within the dimers undergo significant hybridization, resulting in the emergence of new split peaks at the lower-energy range due to hybridization of the longitude mode and the transverse mode in the middle of the chain induced by it. At the high-energy range, the longitude multipole mode on the other chain is induced by the transverse center, and the interaction results in the splitting and appearance of hidden modes as the rotation angle increases. Both the excitation in the orthogonal direction and the electromagnetic field enhancement effects confirm the hybridization, which also provides the tenability of the plasmon resonance. This research provides a new theoretical perspective for understanding plasmonic hybridization phenomena at the nanoscale and offers important theoretical guidance for designing novel optoelectronic devices based on molecular plasmonics.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 5","pages":"2606–2618 2606–2618"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmon Hybridization in Rotation Bimetallic-Chain System\",\"authors\":\"Nan Gao,&nbsp;Haoran Liu,&nbsp;Yongqi Chen and Yurui Fang*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0798810.1021/acs.jpcc.4c07988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Plasmon hybridization phenomena in metallic chain heterodimers represent a frontier in nanoscale optoelectronic research, offering insights into the quantum mechanisms that govern their behavior. Utilizing first-principles-based computational methods, we conduct a systematic study into the dimer configurations formed by Na<sub>8</sub> and Mg<sub>8</sub> chains, encompassing Na<sub>8</sub> homodimer, Mg<sub>8</sub> homodimer, and Na<sub>8</sub>Mg<sub>8</sub> heterodimer. The study reveals that with the variation of bichain rotation angles, the plasmonic resonance modes within the dimers undergo significant hybridization, resulting in the emergence of new split peaks at the lower-energy range due to hybridization of the longitude mode and the transverse mode in the middle of the chain induced by it. At the high-energy range, the longitude multipole mode on the other chain is induced by the transverse center, and the interaction results in the splitting and appearance of hidden modes as the rotation angle increases. Both the excitation in the orthogonal direction and the electromagnetic field enhancement effects confirm the hybridization, which also provides the tenability of the plasmon resonance. This research provides a new theoretical perspective for understanding plasmonic hybridization phenomena at the nanoscale and offers important theoretical guidance for designing novel optoelectronic devices based on molecular plasmonics.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 5\",\"pages\":\"2606–2618 2606–2618\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c07988\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c07988","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属链异二聚体中的等离子体杂化现象代表了纳米光电子研究的前沿,为控制其行为的量子机制提供了见解。利用基于第一性原理的计算方法,我们对Na8和m8链形成的二聚体构型进行了系统的研究,包括Na8同二聚体、m8同二聚体和na8m8异二聚体。研究表明,随着双链旋转角度的变化,二聚体内部的等离子体共振模式发生了明显的杂化,在较低的能量范围内出现了新的分裂峰,这是由于它引起了链中间的经度模式和横向模式的杂化。在高能范围内,另一条链上的经度多极模式是由横向中心诱导的,随着旋转角度的增加,这种相互作用导致了分裂和隐藏模式的出现。正交激发和电磁场增强效应都证实了杂化现象的存在,这也为等离子体共振提供了可行性。该研究为在纳米尺度上理解等离子体杂化现象提供了新的理论视角,并为设计基于分子等离子体的新型光电器件提供了重要的理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasmon Hybridization in Rotation Bimetallic-Chain System

Plasmon Hybridization in Rotation Bimetallic-Chain System

Plasmon hybridization phenomena in metallic chain heterodimers represent a frontier in nanoscale optoelectronic research, offering insights into the quantum mechanisms that govern their behavior. Utilizing first-principles-based computational methods, we conduct a systematic study into the dimer configurations formed by Na8 and Mg8 chains, encompassing Na8 homodimer, Mg8 homodimer, and Na8Mg8 heterodimer. The study reveals that with the variation of bichain rotation angles, the plasmonic resonance modes within the dimers undergo significant hybridization, resulting in the emergence of new split peaks at the lower-energy range due to hybridization of the longitude mode and the transverse mode in the middle of the chain induced by it. At the high-energy range, the longitude multipole mode on the other chain is induced by the transverse center, and the interaction results in the splitting and appearance of hidden modes as the rotation angle increases. Both the excitation in the orthogonal direction and the electromagnetic field enhancement effects confirm the hybridization, which also provides the tenability of the plasmon resonance. This research provides a new theoretical perspective for understanding plasmonic hybridization phenomena at the nanoscale and offers important theoretical guidance for designing novel optoelectronic devices based on molecular plasmonics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信