基于波动方程的系留空间拖船系统振动运动控制

IF 5.7 2区 计算机科学 Q1 ENGINEERING, AEROSPACE
Anrui Shi;Han Cai
{"title":"基于波动方程的系留空间拖船系统振动运动控制","authors":"Anrui Shi;Han Cai","doi":"10.1109/TAES.2025.3538596","DOIUrl":null,"url":null,"abstract":"This article investigates the librational motion control problem of the tethered space-tug (TST) system in the process of deorbiting space debris. By analyzing the dynamic equations of the TST system, the librational motion control problem of the system in 3-D space can be transcribed to librational motion control problems inside and outside the orbital plane. The motion of the TST system inside or outside the orbital plane can be properly characterized through a highly simplified ring-string (R-S) model, which can be properly analyzed using the finite time-domain wave equation. An absorbing excitation method is proposed to suppress the librational motion of the R-S model, where the librational motion suppression control is achieved by offsetting the equivalent excitation obtained through motion analysis. Different from wave-based controls, which ignore the mass of execution structure, the effect of the mass of the tug and target on the control rate is compared through numerical simulations of four control rates based on the absorbing excitation method.","PeriodicalId":13157,"journal":{"name":"IEEE Transactions on Aerospace and Electronic Systems","volume":"61 3","pages":"8070-8080"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of Librational Motion on Tethered Space-Tug System Based on Wave Equation\",\"authors\":\"Anrui Shi;Han Cai\",\"doi\":\"10.1109/TAES.2025.3538596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the librational motion control problem of the tethered space-tug (TST) system in the process of deorbiting space debris. By analyzing the dynamic equations of the TST system, the librational motion control problem of the system in 3-D space can be transcribed to librational motion control problems inside and outside the orbital plane. The motion of the TST system inside or outside the orbital plane can be properly characterized through a highly simplified ring-string (R-S) model, which can be properly analyzed using the finite time-domain wave equation. An absorbing excitation method is proposed to suppress the librational motion of the R-S model, where the librational motion suppression control is achieved by offsetting the equivalent excitation obtained through motion analysis. Different from wave-based controls, which ignore the mass of execution structure, the effect of the mass of the tug and target on the control rate is compared through numerical simulations of four control rates based on the absorbing excitation method.\",\"PeriodicalId\":13157,\"journal\":{\"name\":\"IEEE Transactions on Aerospace and Electronic Systems\",\"volume\":\"61 3\",\"pages\":\"8070-8080\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Aerospace and Electronic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10872826/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Aerospace and Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10872826/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

研究了系留空间拖船(TST)系统在空间碎片脱轨过程中的运动控制问题。通过分析TST系统的动力学方程,可以将系统在三维空间中的运动控制问题转化为轨道平面内外的运动控制问题。通过高度简化的环弦(R-S)模型可以很好地表征TST系统在轨道平面内或轨道平面外的运动,该模型可以用有限时域波动方程进行适当的分析。提出了一种吸收激励抑制R-S模型的振动运动的方法,通过抵消运动分析得到的等效激励来实现振动运动抑制控制。与忽略执行结构质量的波浪控制不同,通过吸收激励法对四种控制率的数值模拟,比较了拖船和目标质量对控制率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of Librational Motion on Tethered Space-Tug System Based on Wave Equation
This article investigates the librational motion control problem of the tethered space-tug (TST) system in the process of deorbiting space debris. By analyzing the dynamic equations of the TST system, the librational motion control problem of the system in 3-D space can be transcribed to librational motion control problems inside and outside the orbital plane. The motion of the TST system inside or outside the orbital plane can be properly characterized through a highly simplified ring-string (R-S) model, which can be properly analyzed using the finite time-domain wave equation. An absorbing excitation method is proposed to suppress the librational motion of the R-S model, where the librational motion suppression control is achieved by offsetting the equivalent excitation obtained through motion analysis. Different from wave-based controls, which ignore the mass of execution structure, the effect of the mass of the tug and target on the control rate is compared through numerical simulations of four control rates based on the absorbing excitation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
13.60%
发文量
433
审稿时长
8.7 months
期刊介绍: IEEE Transactions on Aerospace and Electronic Systems focuses on the organization, design, development, integration, and operation of complex systems for space, air, ocean, or ground environment. These systems include, but are not limited to, navigation, avionics, spacecraft, aerospace power, radar, sonar, telemetry, defense, transportation, automated testing, and command and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信