Wigner矩阵特征多项式的最优刚度和最大值

IF 2.4 1区 数学 Q1 MATHEMATICS
Paul Bourgade, Patrick Lopatto, Ofer Zeitouni
{"title":"Wigner矩阵特征多项式的最优刚度和最大值","authors":"Paul Bourgade, Patrick Lopatto, Ofer Zeitouni","doi":"10.1007/s00039-025-00701-5","DOIUrl":null,"url":null,"abstract":"<p>We determine to leading order the maximum of the characteristic polynomial for Wigner matrices and <i>β</i>-ensembles. In the special case of Gaussian-divisible Wigner matrices, our method provides universality of the maximum up to tightness. These are the first universal results on the Fyodorov–Hiary–Keating conjectures for these models, and in particular answer the question of optimal rigidity for the spectrum of Wigner matrices.</p><p>Our proofs combine dynamical techniques for universality of eigenvalue statistics with ideas surrounding the maxima of log-correlated fields and Gaussian multiplicative chaos.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"13 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Rigidity and Maximum of the Characteristic Polynomial of Wigner Matrices\",\"authors\":\"Paul Bourgade, Patrick Lopatto, Ofer Zeitouni\",\"doi\":\"10.1007/s00039-025-00701-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We determine to leading order the maximum of the characteristic polynomial for Wigner matrices and <i>β</i>-ensembles. In the special case of Gaussian-divisible Wigner matrices, our method provides universality of the maximum up to tightness. These are the first universal results on the Fyodorov–Hiary–Keating conjectures for these models, and in particular answer the question of optimal rigidity for the spectrum of Wigner matrices.</p><p>Our proofs combine dynamical techniques for universality of eigenvalue statistics with ideas surrounding the maxima of log-correlated fields and Gaussian multiplicative chaos.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-025-00701-5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00701-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了Wigner矩阵和β-系综的特征多项式的极大值的导阶。在高斯可整除Wigner矩阵的特殊情况下,我们的方法提供了最大值到紧性的通用性。这是关于这些模型的Fyodorov-Hiary-Keating猜想的第一个普遍结果,特别是回答了Wigner矩阵谱的最优刚性问题。我们的证明将特征值统计的普适性的动态技术与对数相关场的最大值和高斯乘法混沌的思想结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Rigidity and Maximum of the Characteristic Polynomial of Wigner Matrices

We determine to leading order the maximum of the characteristic polynomial for Wigner matrices and β-ensembles. In the special case of Gaussian-divisible Wigner matrices, our method provides universality of the maximum up to tightness. These are the first universal results on the Fyodorov–Hiary–Keating conjectures for these models, and in particular answer the question of optimal rigidity for the spectrum of Wigner matrices.

Our proofs combine dynamical techniques for universality of eigenvalue statistics with ideas surrounding the maxima of log-correlated fields and Gaussian multiplicative chaos.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信