Meiding Liu;Zhengchun Zhou;Qiao Shi;Guyue Li;Zilong Liu;Pingzhi Fan;Inkyu Lee
{"title":"混合串通窃听器集成传感与通信系统的联合波束形成设计","authors":"Meiding Liu;Zhengchun Zhou;Qiao Shi;Guyue Li;Zilong Liu;Pingzhi Fan;Inkyu Lee","doi":"10.1109/TCOMM.2025.3538835","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the physical layer security (PLS) problem for integrated sensing and communication (ISAC) systems in the presence of hybrid-colluding eavesdroppers, where an active eavesdropper (AE) and a passive eavesdropper (PE) collude to intercept the confidential information. To ensure the accuracy of sensing while preventing the eavesdropping, a base station transmits a signal consisting of information symbols and sensing waveform, in which the sensing waveform can be also used as artificial noise to interfere with eavesdroppers. Under this setup, we propose an alternating optimization-based two stage scheme (AO-TSS) for improving the sensing and communication performance. In the first stage, based on the assumptions that the perfect channel state information (CSI) of the AE and statistical CSI of the PE are known, the communication and sensing beamforming problem is formulated with the objective of minimizing the weighted sum of the beampattern matching mean squared error (MSE) and cross-correlation, subject to the secure transmission constraint. To tackle the non-convexity, we propose a semi-definite relaxation (SDR) algorithm and a reduced-complexity zero-forcing (ZF) algorithm. Then, the scenarios are further extended to more general cases with imperfect AE CSI and unknown PE CSI. To further improve the communication performance, the second-stage problem is developed to optimize the secrecy rate threshold under the radar performance constraint. Finally, numerical results demonstrate the superiority of the proposed scheme in terms of sensing and secure communication.","PeriodicalId":13041,"journal":{"name":"IEEE Transactions on Communications","volume":"73 8","pages":"6484-6498"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Beamforming Design for Integrated Sensing and Communication Systems With Hybrid-Colluding Eavesdroppers\",\"authors\":\"Meiding Liu;Zhengchun Zhou;Qiao Shi;Guyue Li;Zilong Liu;Pingzhi Fan;Inkyu Lee\",\"doi\":\"10.1109/TCOMM.2025.3538835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the physical layer security (PLS) problem for integrated sensing and communication (ISAC) systems in the presence of hybrid-colluding eavesdroppers, where an active eavesdropper (AE) and a passive eavesdropper (PE) collude to intercept the confidential information. To ensure the accuracy of sensing while preventing the eavesdropping, a base station transmits a signal consisting of information symbols and sensing waveform, in which the sensing waveform can be also used as artificial noise to interfere with eavesdroppers. Under this setup, we propose an alternating optimization-based two stage scheme (AO-TSS) for improving the sensing and communication performance. In the first stage, based on the assumptions that the perfect channel state information (CSI) of the AE and statistical CSI of the PE are known, the communication and sensing beamforming problem is formulated with the objective of minimizing the weighted sum of the beampattern matching mean squared error (MSE) and cross-correlation, subject to the secure transmission constraint. To tackle the non-convexity, we propose a semi-definite relaxation (SDR) algorithm and a reduced-complexity zero-forcing (ZF) algorithm. Then, the scenarios are further extended to more general cases with imperfect AE CSI and unknown PE CSI. To further improve the communication performance, the second-stage problem is developed to optimize the secrecy rate threshold under the radar performance constraint. Finally, numerical results demonstrate the superiority of the proposed scheme in terms of sensing and secure communication.\",\"PeriodicalId\":13041,\"journal\":{\"name\":\"IEEE Transactions on Communications\",\"volume\":\"73 8\",\"pages\":\"6484-6498\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10872934/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10872934/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Joint Beamforming Design for Integrated Sensing and Communication Systems With Hybrid-Colluding Eavesdroppers
In this paper, we consider the physical layer security (PLS) problem for integrated sensing and communication (ISAC) systems in the presence of hybrid-colluding eavesdroppers, where an active eavesdropper (AE) and a passive eavesdropper (PE) collude to intercept the confidential information. To ensure the accuracy of sensing while preventing the eavesdropping, a base station transmits a signal consisting of information symbols and sensing waveform, in which the sensing waveform can be also used as artificial noise to interfere with eavesdroppers. Under this setup, we propose an alternating optimization-based two stage scheme (AO-TSS) for improving the sensing and communication performance. In the first stage, based on the assumptions that the perfect channel state information (CSI) of the AE and statistical CSI of the PE are known, the communication and sensing beamforming problem is formulated with the objective of minimizing the weighted sum of the beampattern matching mean squared error (MSE) and cross-correlation, subject to the secure transmission constraint. To tackle the non-convexity, we propose a semi-definite relaxation (SDR) algorithm and a reduced-complexity zero-forcing (ZF) algorithm. Then, the scenarios are further extended to more general cases with imperfect AE CSI and unknown PE CSI. To further improve the communication performance, the second-stage problem is developed to optimize the secrecy rate threshold under the radar performance constraint. Finally, numerical results demonstrate the superiority of the proposed scheme in terms of sensing and secure communication.
期刊介绍:
The IEEE Transactions on Communications is dedicated to publishing high-quality manuscripts that showcase advancements in the state-of-the-art of telecommunications. Our scope encompasses all aspects of telecommunications, including telephone, telegraphy, facsimile, and television, facilitated by electromagnetic propagation methods such as radio, wire, aerial, underground, coaxial, and submarine cables, as well as waveguides, communication satellites, and lasers. We cover telecommunications in various settings, including marine, aeronautical, space, and fixed station services, addressing topics such as repeaters, radio relaying, signal storage, regeneration, error detection and correction, multiplexing, carrier techniques, communication switching systems, data communications, and communication theory. Join us in advancing the field of telecommunications through groundbreaking research and innovation.