{"title":"质子夹层面包的振动辅助隧穿──与动态匹配的关联","authors":"Yusef G. Ahmed, Gabe Gomes, Dean J. Tantillo","doi":"10.1021/jacs.4c16135","DOIUrl":null,"url":null,"abstract":"Proton sandwiches are unusual nonclassical carbocations characterized by a five-center, four-electron bonding array which rapidly isomerize to lower energy isomers with three-center, two-electron bonding arrays via hydrogen migration transition states. These reactions are suspected to involve significant contributions from tunneling, even at relatively high temperatures, where tunneling effects are usually minimal. Machine-learning-accelerated ring-polymer, quasiclassical, and classical <i>ab initio</i> molecular dynamics simulations were used to investigate the effects of a flavor of dynamic matching that involves coupling of vibrational modes of the reactant to the transition structure mode with an imaginary frequency, and how quantum mechanical tunneling affects this coupling. These nonstatistical dynamic effects were quantified by analysis of momentum in the molecular dynamics simulations. We show the importance of momentum for reactivity with and without tunneling, how tunneling amplifies these benefits, and that vibrational modes can be leveraged to generate beneficial momentum.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"25 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibrationally Assisted Tunneling through the Bread of a Proton Sandwich─Connections to Dynamic Matching\",\"authors\":\"Yusef G. Ahmed, Gabe Gomes, Dean J. Tantillo\",\"doi\":\"10.1021/jacs.4c16135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton sandwiches are unusual nonclassical carbocations characterized by a five-center, four-electron bonding array which rapidly isomerize to lower energy isomers with three-center, two-electron bonding arrays via hydrogen migration transition states. These reactions are suspected to involve significant contributions from tunneling, even at relatively high temperatures, where tunneling effects are usually minimal. Machine-learning-accelerated ring-polymer, quasiclassical, and classical <i>ab initio</i> molecular dynamics simulations were used to investigate the effects of a flavor of dynamic matching that involves coupling of vibrational modes of the reactant to the transition structure mode with an imaginary frequency, and how quantum mechanical tunneling affects this coupling. These nonstatistical dynamic effects were quantified by analysis of momentum in the molecular dynamics simulations. We show the importance of momentum for reactivity with and without tunneling, how tunneling amplifies these benefits, and that vibrational modes can be leveraged to generate beneficial momentum.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c16135\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16135","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Vibrationally Assisted Tunneling through the Bread of a Proton Sandwich─Connections to Dynamic Matching
Proton sandwiches are unusual nonclassical carbocations characterized by a five-center, four-electron bonding array which rapidly isomerize to lower energy isomers with three-center, two-electron bonding arrays via hydrogen migration transition states. These reactions are suspected to involve significant contributions from tunneling, even at relatively high temperatures, where tunneling effects are usually minimal. Machine-learning-accelerated ring-polymer, quasiclassical, and classical ab initio molecular dynamics simulations were used to investigate the effects of a flavor of dynamic matching that involves coupling of vibrational modes of the reactant to the transition structure mode with an imaginary frequency, and how quantum mechanical tunneling affects this coupling. These nonstatistical dynamic effects were quantified by analysis of momentum in the molecular dynamics simulations. We show the importance of momentum for reactivity with and without tunneling, how tunneling amplifies these benefits, and that vibrational modes can be leveraged to generate beneficial momentum.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.