质子夹层面包的振动辅助隧穿──与动态匹配的关联

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yusef G. Ahmed, Gabe Gomes, Dean J. Tantillo
{"title":"质子夹层面包的振动辅助隧穿──与动态匹配的关联","authors":"Yusef G. Ahmed, Gabe Gomes, Dean J. Tantillo","doi":"10.1021/jacs.4c16135","DOIUrl":null,"url":null,"abstract":"Proton sandwiches are unusual nonclassical carbocations characterized by a five-center, four-electron bonding array which rapidly isomerize to lower energy isomers with three-center, two-electron bonding arrays via hydrogen migration transition states. These reactions are suspected to involve significant contributions from tunneling, even at relatively high temperatures, where tunneling effects are usually minimal. Machine-learning-accelerated ring-polymer, quasiclassical, and classical <i>ab initio</i> molecular dynamics simulations were used to investigate the effects of a flavor of dynamic matching that involves coupling of vibrational modes of the reactant to the transition structure mode with an imaginary frequency, and how quantum mechanical tunneling affects this coupling. These nonstatistical dynamic effects were quantified by analysis of momentum in the molecular dynamics simulations. We show the importance of momentum for reactivity with and without tunneling, how tunneling amplifies these benefits, and that vibrational modes can be leveraged to generate beneficial momentum.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"25 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibrationally Assisted Tunneling through the Bread of a Proton Sandwich─Connections to Dynamic Matching\",\"authors\":\"Yusef G. Ahmed, Gabe Gomes, Dean J. Tantillo\",\"doi\":\"10.1021/jacs.4c16135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton sandwiches are unusual nonclassical carbocations characterized by a five-center, four-electron bonding array which rapidly isomerize to lower energy isomers with three-center, two-electron bonding arrays via hydrogen migration transition states. These reactions are suspected to involve significant contributions from tunneling, even at relatively high temperatures, where tunneling effects are usually minimal. Machine-learning-accelerated ring-polymer, quasiclassical, and classical <i>ab initio</i> molecular dynamics simulations were used to investigate the effects of a flavor of dynamic matching that involves coupling of vibrational modes of the reactant to the transition structure mode with an imaginary frequency, and how quantum mechanical tunneling affects this coupling. These nonstatistical dynamic effects were quantified by analysis of momentum in the molecular dynamics simulations. We show the importance of momentum for reactivity with and without tunneling, how tunneling amplifies these benefits, and that vibrational modes can be leveraged to generate beneficial momentum.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c16135\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16135","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

质子三明治是一种罕见的非经典碳正离子,其特征是五中心四电子键阵列,通过氢迁移过渡态迅速异构为三中心两电子键阵列的低能量异构体。这些反应被怀疑涉及隧道效应的重大贡献,即使在相对较高的温度下,隧道效应通常最小。使用机器学习加速环聚合物、准经典和经典从头算分子动力学模拟来研究一种动态匹配的影响,这种匹配涉及到反应物的振动模式与虚频率的过渡结构模式的耦合,以及量子力学隧道效应如何影响这种耦合。通过分子动力学模拟中的动量分析,对这些非统计动力学效应进行了量化。我们展示了动量对反应性的重要性,隧道是如何放大这些好处的,以及振动模式可以用来产生有益的动量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vibrationally Assisted Tunneling through the Bread of a Proton Sandwich─Connections to Dynamic Matching

Vibrationally Assisted Tunneling through the Bread of a Proton Sandwich─Connections to Dynamic Matching
Proton sandwiches are unusual nonclassical carbocations characterized by a five-center, four-electron bonding array which rapidly isomerize to lower energy isomers with three-center, two-electron bonding arrays via hydrogen migration transition states. These reactions are suspected to involve significant contributions from tunneling, even at relatively high temperatures, where tunneling effects are usually minimal. Machine-learning-accelerated ring-polymer, quasiclassical, and classical ab initio molecular dynamics simulations were used to investigate the effects of a flavor of dynamic matching that involves coupling of vibrational modes of the reactant to the transition structure mode with an imaginary frequency, and how quantum mechanical tunneling affects this coupling. These nonstatistical dynamic effects were quantified by analysis of momentum in the molecular dynamics simulations. We show the importance of momentum for reactivity with and without tunneling, how tunneling amplifies these benefits, and that vibrational modes can be leveraged to generate beneficial momentum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信