达格列净对肝脏脂质代谢的影响及酮体水平的动态模型。

IF 3.7 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Zhijie Wan, Ming Yuan, Ziao Liu, Yuan Cai, Hua He, Kun Hao
{"title":"达格列净对肝脏脂质代谢的影响及酮体水平的动态模型。","authors":"Zhijie Wan, Ming Yuan, Ziao Liu, Yuan Cai, Hua He, Kun Hao","doi":"10.1208/s12248-025-01024-x","DOIUrl":null,"url":null,"abstract":"<p><p>The rising prevalence of metabolic-associated steatotic liver disease emphasizes the need to understand its lipid metabolism. Dapagliflozin may improve hepatic steatosis but could also increase the risk of ketoacidosis by elevating β-hydroxybutyrate (KB) levels. This study investigates dapagliflozin's effects on hepatic lipid metabolism and quantifies KB levels in vivo. Male Sprague-Dawley rats were fed either a normal diet or a high-fat diet (HFD) for 12 weeks. The HFD rats were then divided into four subgroups to receive vehicle, 0.5 mg/kg, 1 mg/kg, and 3 mg/kg of dapagliflozin for four weeks. Free fatty acids (FFA) and KB levels were monitored, while protein and gene expression were analyzed. And a dynamic model of KB was developed for humans based on preclinical data. Dapagliflozin decreased body weight and visceral fat in HFD rats, increasing KB by upregulating CPT1a, HMGCS2, and HMGCL, and downregulating ACC. These changes correlated with reduced liver/fat index, liver pathology score, and oil-red staining area. A pharmacokinetic/pharmacodynamic (PK/PD) model was created from preclinical data to quantify KB levels in rats and validated in humans. Dapagliflozin reduces hepatic steatosis by enhancing fatty acid β-oxidation and ketogenesis and inhibiting fat synthesis. A dynamic model accurately predicts ketone body levels in treated individuals.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"27 1","pages":"38"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Dapagliflozin on Hepatic Lipid Metabolism and a Dynamic Model of Ketone Body Levels.\",\"authors\":\"Zhijie Wan, Ming Yuan, Ziao Liu, Yuan Cai, Hua He, Kun Hao\",\"doi\":\"10.1208/s12248-025-01024-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rising prevalence of metabolic-associated steatotic liver disease emphasizes the need to understand its lipid metabolism. Dapagliflozin may improve hepatic steatosis but could also increase the risk of ketoacidosis by elevating β-hydroxybutyrate (KB) levels. This study investigates dapagliflozin's effects on hepatic lipid metabolism and quantifies KB levels in vivo. Male Sprague-Dawley rats were fed either a normal diet or a high-fat diet (HFD) for 12 weeks. The HFD rats were then divided into four subgroups to receive vehicle, 0.5 mg/kg, 1 mg/kg, and 3 mg/kg of dapagliflozin for four weeks. Free fatty acids (FFA) and KB levels were monitored, while protein and gene expression were analyzed. And a dynamic model of KB was developed for humans based on preclinical data. Dapagliflozin decreased body weight and visceral fat in HFD rats, increasing KB by upregulating CPT1a, HMGCS2, and HMGCL, and downregulating ACC. These changes correlated with reduced liver/fat index, liver pathology score, and oil-red staining area. A pharmacokinetic/pharmacodynamic (PK/PD) model was created from preclinical data to quantify KB levels in rats and validated in humans. Dapagliflozin reduces hepatic steatosis by enhancing fatty acid β-oxidation and ketogenesis and inhibiting fat synthesis. A dynamic model accurately predicts ketone body levels in treated individuals.</p>\",\"PeriodicalId\":50934,\"journal\":{\"name\":\"AAPS Journal\",\"volume\":\"27 1\",\"pages\":\"38\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-025-01024-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-025-01024-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

代谢相关脂肪变性肝病的患病率不断上升,强调了了解其脂质代谢的必要性。达格列净可能改善肝脂肪变性,但也可能通过升高β-羟基丁酸(KB)水平增加酮症酸中毒的风险。本研究探讨了氨格列净对肝脏脂质代谢的影响,并量化了体内KB水平。雄性Sprague-Dawley大鼠分别饲喂正常饮食和高脂肪饮食(HFD) 12周。然后将HFD大鼠分为4个亚组,分别给予代药、0.5 mg/kg、1 mg/kg和3 mg/kg达格列净,持续4周。监测游离脂肪酸(FFA)和KB水平,分析蛋白质和基因表达。基于临床前数据,建立了人类KB动态模型。达格列净降低HFD大鼠的体重和内脏脂肪,通过上调CPT1a、HMGCS2和HMGCL增加KB,下调ACC。这些变化与肝脏/脂肪指数、肝脏病理评分和油红染色面积的降低有关。根据临床前数据建立药代动力学/药效学(PK/PD)模型,量化大鼠体内的KB水平,并在人体内进行验证。达格列净通过增强脂肪酸β氧化和酮生成以及抑制脂肪合成来减少肝脏脂肪变性。一个动态模型准确地预测了治疗个体的酮体水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Dapagliflozin on Hepatic Lipid Metabolism and a Dynamic Model of Ketone Body Levels.

The rising prevalence of metabolic-associated steatotic liver disease emphasizes the need to understand its lipid metabolism. Dapagliflozin may improve hepatic steatosis but could also increase the risk of ketoacidosis by elevating β-hydroxybutyrate (KB) levels. This study investigates dapagliflozin's effects on hepatic lipid metabolism and quantifies KB levels in vivo. Male Sprague-Dawley rats were fed either a normal diet or a high-fat diet (HFD) for 12 weeks. The HFD rats were then divided into four subgroups to receive vehicle, 0.5 mg/kg, 1 mg/kg, and 3 mg/kg of dapagliflozin for four weeks. Free fatty acids (FFA) and KB levels were monitored, while protein and gene expression were analyzed. And a dynamic model of KB was developed for humans based on preclinical data. Dapagliflozin decreased body weight and visceral fat in HFD rats, increasing KB by upregulating CPT1a, HMGCS2, and HMGCL, and downregulating ACC. These changes correlated with reduced liver/fat index, liver pathology score, and oil-red staining area. A pharmacokinetic/pharmacodynamic (PK/PD) model was created from preclinical data to quantify KB levels in rats and validated in humans. Dapagliflozin reduces hepatic steatosis by enhancing fatty acid β-oxidation and ketogenesis and inhibiting fat synthesis. A dynamic model accurately predicts ketone body levels in treated individuals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS Journal
AAPS Journal 医学-药学
CiteScore
7.80
自引率
4.40%
发文量
109
审稿时长
1 months
期刊介绍: The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including: · Drug Design and Discovery · Pharmaceutical Biotechnology · Biopharmaceutics, Formulation, and Drug Delivery · Metabolism and Transport · Pharmacokinetics, Pharmacodynamics, and Pharmacometrics · Translational Research · Clinical Evaluations and Therapeutic Outcomes · Regulatory Science We invite submissions under the following article types: · Original Research Articles · Reviews and Mini-reviews · White Papers, Commentaries, and Editorials · Meeting Reports · Brief/Technical Reports and Rapid Communications · Regulatory Notes · Tutorials · Protocols in the Pharmaceutical Sciences In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信