Salman Khan, Sumaiya Noor, Tahir Javed, Afshan Naseem, Fahad Aslam, Salman A AlQahtani, Nijad Ahmad
{"title":"xgboost增强集合模型使用判别杂交特征来预测sumoylation位点。","authors":"Salman Khan, Sumaiya Noor, Tahir Javed, Afshan Naseem, Fahad Aslam, Salman A AlQahtani, Nijad Ahmad","doi":"10.1186/s13040-024-00415-8","DOIUrl":null,"url":null,"abstract":"<p><p>Posttranslational modifications (PTMs) are essential for regulating protein localization and stability, significantly affecting gene expression, biological functions, and genome replication. Among these, sumoylation a PTM that attaches a chemical group to protein sequences-plays a critical role in protein function. Identifying sumoylation sites is particularly important due to their links to Parkinson's and Alzheimer's. This study introduces XGBoost-Sumo, a robust model to predict sumoylation sites by integrating protein structure and sequence data. The model utilizes a transformer-based attention mechanism to encode peptides and extract evolutionary features through the PsePSSM-DWT approach. By fusing word embeddings with evolutionary descriptors, it applies the SHapley Additive exPlanations (SHAP) algorithm for optimal feature selection and uses eXtreme Gradient Boosting (XGBoost) for classification. XGBoost-Sumo achieved an impressive accuracy of 99.68% on benchmark datasets using 10-fold cross-validation and 96.08% on independent samples. This marks a significant improvement, outperforming existing models by 10.31% on training data and 2.74% on independent tests. The model's reliability and high performance make it a valuable resource for researchers, with strong potential for applications in pharmaceutical development.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"12"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792219/pdf/","citationCount":"0","resultStr":"{\"title\":\"XGBoost-enhanced ensemble model using discriminative hybrid features for the prediction of sumoylation sites.\",\"authors\":\"Salman Khan, Sumaiya Noor, Tahir Javed, Afshan Naseem, Fahad Aslam, Salman A AlQahtani, Nijad Ahmad\",\"doi\":\"10.1186/s13040-024-00415-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Posttranslational modifications (PTMs) are essential for regulating protein localization and stability, significantly affecting gene expression, biological functions, and genome replication. Among these, sumoylation a PTM that attaches a chemical group to protein sequences-plays a critical role in protein function. Identifying sumoylation sites is particularly important due to their links to Parkinson's and Alzheimer's. This study introduces XGBoost-Sumo, a robust model to predict sumoylation sites by integrating protein structure and sequence data. The model utilizes a transformer-based attention mechanism to encode peptides and extract evolutionary features through the PsePSSM-DWT approach. By fusing word embeddings with evolutionary descriptors, it applies the SHapley Additive exPlanations (SHAP) algorithm for optimal feature selection and uses eXtreme Gradient Boosting (XGBoost) for classification. XGBoost-Sumo achieved an impressive accuracy of 99.68% on benchmark datasets using 10-fold cross-validation and 96.08% on independent samples. This marks a significant improvement, outperforming existing models by 10.31% on training data and 2.74% on independent tests. The model's reliability and high performance make it a valuable resource for researchers, with strong potential for applications in pharmaceutical development.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"18 1\",\"pages\":\"12\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792219/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-024-00415-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00415-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
XGBoost-enhanced ensemble model using discriminative hybrid features for the prediction of sumoylation sites.
Posttranslational modifications (PTMs) are essential for regulating protein localization and stability, significantly affecting gene expression, biological functions, and genome replication. Among these, sumoylation a PTM that attaches a chemical group to protein sequences-plays a critical role in protein function. Identifying sumoylation sites is particularly important due to their links to Parkinson's and Alzheimer's. This study introduces XGBoost-Sumo, a robust model to predict sumoylation sites by integrating protein structure and sequence data. The model utilizes a transformer-based attention mechanism to encode peptides and extract evolutionary features through the PsePSSM-DWT approach. By fusing word embeddings with evolutionary descriptors, it applies the SHapley Additive exPlanations (SHAP) algorithm for optimal feature selection and uses eXtreme Gradient Boosting (XGBoost) for classification. XGBoost-Sumo achieved an impressive accuracy of 99.68% on benchmark datasets using 10-fold cross-validation and 96.08% on independent samples. This marks a significant improvement, outperforming existing models by 10.31% on training data and 2.74% on independent tests. The model's reliability and high performance make it a valuable resource for researchers, with strong potential for applications in pharmaceutical development.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.