基质基因标记预测胰腺导管腺癌患者来源的异种移植模型对化疗的反应性。

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Molecular Oncology Pub Date : 2025-04-01 Epub Date: 2025-02-04 DOI:10.1002/1878-0261.13816
Alessia Anastasia, Laura Formenti, Paola Ostano, Lucia Minoli, Andrea Resovi, Lavinia Morosi, Claudia Fioravanti, Edoardo Micotti, Cristina Matteo, Eugenio Scanziani, Giovanna Chiorino, Raffaella Giavazzi, Carmen Ghilardi, Dorina Belotti
{"title":"基质基因标记预测胰腺导管腺癌患者来源的异种移植模型对化疗的反应性。","authors":"Alessia Anastasia, Laura Formenti, Paola Ostano, Lucia Minoli, Andrea Resovi, Lavinia Morosi, Claudia Fioravanti, Edoardo Micotti, Cristina Matteo, Eugenio Scanziani, Giovanna Chiorino, Raffaella Giavazzi, Carmen Ghilardi, Dorina Belotti","doi":"10.1002/1878-0261.13816","DOIUrl":null,"url":null,"abstract":"<p><p>Despite many efforts to understand the molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) treatment resistance, there is still no reliable method for selecting patients who could benefit from standard pharmacological treatment. Here, four PDAC patient-derived xenografts (PDAC-PDXs) with different responses to gemcitabine plus nab-paclitaxel (nanoparticle albumin-bound paclitaxel) were studied to dissect the contribution of both tumor and host microenvironment to treatment response. PDAC-PDXs transplanted into the pancreas of immunodeficient mice retained the main genetic and histopathological characteristics of the original human tumors, including invasiveness and desmoplastic reaction. Response to chemotherapy was associated with a specific 294 stroma gene signature and was not due to the intrinsic responsiveness of tumor cells or differences in drug delivery. Human dataset analysis validated the expression of the 294 stroma gene signature in PDAC clinical samples, confirming PDAC-PDXs as a useful tool to study the biology of tumor-host interactions and to test drug efficacy. In summary, we identified a stroma gene signature that differentiates PDAC-PDXs that are responsive to gemcitabine plus Nab-paclitaxel treatment from those that are not, confirming the active role of the tumor microenvironment in the drug response.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"1075-1091"},"PeriodicalIF":6.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stroma gene signature predicts responsiveness to chemotherapy in pancreatic ductal adenocarcinoma patient-derived xenograft models.\",\"authors\":\"Alessia Anastasia, Laura Formenti, Paola Ostano, Lucia Minoli, Andrea Resovi, Lavinia Morosi, Claudia Fioravanti, Edoardo Micotti, Cristina Matteo, Eugenio Scanziani, Giovanna Chiorino, Raffaella Giavazzi, Carmen Ghilardi, Dorina Belotti\",\"doi\":\"10.1002/1878-0261.13816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite many efforts to understand the molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) treatment resistance, there is still no reliable method for selecting patients who could benefit from standard pharmacological treatment. Here, four PDAC patient-derived xenografts (PDAC-PDXs) with different responses to gemcitabine plus nab-paclitaxel (nanoparticle albumin-bound paclitaxel) were studied to dissect the contribution of both tumor and host microenvironment to treatment response. PDAC-PDXs transplanted into the pancreas of immunodeficient mice retained the main genetic and histopathological characteristics of the original human tumors, including invasiveness and desmoplastic reaction. Response to chemotherapy was associated with a specific 294 stroma gene signature and was not due to the intrinsic responsiveness of tumor cells or differences in drug delivery. Human dataset analysis validated the expression of the 294 stroma gene signature in PDAC clinical samples, confirming PDAC-PDXs as a useful tool to study the biology of tumor-host interactions and to test drug efficacy. In summary, we identified a stroma gene signature that differentiates PDAC-PDXs that are responsive to gemcitabine plus Nab-paclitaxel treatment from those that are not, confirming the active role of the tumor microenvironment in the drug response.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"1075-1091\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13816\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13816","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

尽管许多人努力了解胰腺导管腺癌(PDAC)耐药的分子机制,但仍然没有可靠的方法来选择可以从标准药物治疗中获益的患者。在这里,研究了4个对吉西他滨和纳米白蛋白结合紫杉醇(nab-paclitaxel,纳米颗粒白蛋白结合紫杉醇)有不同反应的PDAC患者来源的异种移植物(PDAC- pdxs),以剖析肿瘤和宿主微环境对治疗反应的贡献。移植到免疫缺陷小鼠胰腺中的PDAC-PDXs保留了原始人类肿瘤的主要遗传和组织病理学特征,包括侵袭性和结缔组织增生反应。对化疗的反应与特定的294基质基因特征有关,而不是由于肿瘤细胞的内在反应性或药物传递的差异。人类数据集分析验证了294间质基因标记在PDAC临床样本中的表达,证实PDAC- pdxs是研究肿瘤-宿主相互作用生物学和测试药物疗效的有用工具。总之,我们发现了一种基质基因特征,可以区分对吉西他滨和nab -紫杉醇治疗有反应的pdac - pdx和那些没有反应的pdac - pdx,证实了肿瘤微环境在药物反应中的积极作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stroma gene signature predicts responsiveness to chemotherapy in pancreatic ductal adenocarcinoma patient-derived xenograft models.

Despite many efforts to understand the molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) treatment resistance, there is still no reliable method for selecting patients who could benefit from standard pharmacological treatment. Here, four PDAC patient-derived xenografts (PDAC-PDXs) with different responses to gemcitabine plus nab-paclitaxel (nanoparticle albumin-bound paclitaxel) were studied to dissect the contribution of both tumor and host microenvironment to treatment response. PDAC-PDXs transplanted into the pancreas of immunodeficient mice retained the main genetic and histopathological characteristics of the original human tumors, including invasiveness and desmoplastic reaction. Response to chemotherapy was associated with a specific 294 stroma gene signature and was not due to the intrinsic responsiveness of tumor cells or differences in drug delivery. Human dataset analysis validated the expression of the 294 stroma gene signature in PDAC clinical samples, confirming PDAC-PDXs as a useful tool to study the biology of tumor-host interactions and to test drug efficacy. In summary, we identified a stroma gene signature that differentiates PDAC-PDXs that are responsive to gemcitabine plus Nab-paclitaxel treatment from those that are not, confirming the active role of the tumor microenvironment in the drug response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信