饱和植物-传粉者共生关系的捕食效应动态。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-02-01 DOI:10.1063/5.0233838
Arpita Biswas, Rakesh Medda, Samares Pal
{"title":"饱和植物-传粉者共生关系的捕食效应动态。","authors":"Arpita Biswas, Rakesh Medda, Samares Pal","doi":"10.1063/5.0233838","DOIUrl":null,"url":null,"abstract":"<p><p>In the realm of pollinator declination, understanding the dynamics of plant-pollinator interactions is a critical area of research to maintain healthy ecosystems. This study employs a mathematical modeling approach to investigate the dynamics of a saturated plant-pollinator mutualism, particularly aiming on the effect of predation on pollinator species. Using dynamical system theory, stability analysis of various ecological equilibria is investigated, and bifurcation phenomena such as transcritical and hopf are revealed. Furthermore, numerical results suggest that higher initial predator density can lead to pollinator extinction, although the predator population may not survive eventually. However, increased mutualistic strengths along with reduced predation rate can promote stability and support the sustainability of the plant-pollinator-predator ecosystem. These findings can be helpful for conservation strategies aimed at preserving pollinators and enhancing biodiversity.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of predatory effect on saturated plant-pollinator mutualistic relationship.\",\"authors\":\"Arpita Biswas, Rakesh Medda, Samares Pal\",\"doi\":\"10.1063/5.0233838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the realm of pollinator declination, understanding the dynamics of plant-pollinator interactions is a critical area of research to maintain healthy ecosystems. This study employs a mathematical modeling approach to investigate the dynamics of a saturated plant-pollinator mutualism, particularly aiming on the effect of predation on pollinator species. Using dynamical system theory, stability analysis of various ecological equilibria is investigated, and bifurcation phenomena such as transcritical and hopf are revealed. Furthermore, numerical results suggest that higher initial predator density can lead to pollinator extinction, although the predator population may not survive eventually. However, increased mutualistic strengths along with reduced predation rate can promote stability and support the sustainability of the plant-pollinator-predator ecosystem. These findings can be helpful for conservation strategies aimed at preserving pollinators and enhancing biodiversity.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0233838\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0233838","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在传粉媒介减少的领域,了解植物与传粉媒介相互作用的动态是维持健康生态系统的关键研究领域。本研究采用数学建模的方法研究了饱和植物-传粉媒介相互作用的动力学,特别是针对捕食对传粉媒介物种的影响。运用动力系统理论,研究了各种生态平衡的稳定性,揭示了跨临界和hopf等分岔现象。此外,数值结果表明,较高的初始捕食者密度可能导致传粉者灭绝,尽管捕食者种群最终可能无法存活。然而,随着捕食率的降低,互惠优势的增加可以促进植物-传粉者-捕食者生态系统的稳定性和可持续性。这些发现有助于制定保护传粉媒介和增强生物多样性的保护策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of predatory effect on saturated plant-pollinator mutualistic relationship.

In the realm of pollinator declination, understanding the dynamics of plant-pollinator interactions is a critical area of research to maintain healthy ecosystems. This study employs a mathematical modeling approach to investigate the dynamics of a saturated plant-pollinator mutualism, particularly aiming on the effect of predation on pollinator species. Using dynamical system theory, stability analysis of various ecological equilibria is investigated, and bifurcation phenomena such as transcritical and hopf are revealed. Furthermore, numerical results suggest that higher initial predator density can lead to pollinator extinction, although the predator population may not survive eventually. However, increased mutualistic strengths along with reduced predation rate can promote stability and support the sustainability of the plant-pollinator-predator ecosystem. These findings can be helpful for conservation strategies aimed at preserving pollinators and enhancing biodiversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信