Luis A. Moncayo–Martínez, Naihui He, Elias H. Arias–Nava
{"title":"基于仿真的优化最小化现实环境中线路平衡问题的周期时间","authors":"Luis A. Moncayo–Martínez, Naihui He, Elias H. Arias–Nava","doi":"10.1002/asmb.2925","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the context of Industry 4.0, a production line must be flexible and adaptable to stochastic or real-world environments. As a result, the assembly line balancing (ALB) problem involves managing uncertainty or stochasticity. Several methods have been proposed, including stochastic mathematical programming models and simulations. However, programming models can only incorporate a few sources of uncertainty that result in impractical or unfeasible solutions to implement due to overlooked complexities, while simulation is only used to test solutions from deterministic approaches or adjust parameters without maintaining their optimum value. The proposed methodology uses a deterministic mathematical model to minimize the cycle time, followed by the simulation to measure the impact of selected sources of uncertainty on the cycle time. Finally, the optimum value of the stochastic parameters is computed using simulation-based optimization to maintain the average cycle time close to the deterministic one. A real-life assembly line balancing problem for a motorcycle manufacturing company is solved to test the proposed methodology. The sources of uncertainty are the tasks' stochastic processing times, inter-arrival time, the number of workers in each station, and the speed of the material handling system. Results show that the average cycle time is above 2.7% from the deterministic value computed by the programming model when the inter-arrival time is set to 270 <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation>$$ \\pm $$</annotation>\n </semantics></math> 60 s; the processing times are allowed to increase or decrease by 3 s; the material handling system's speed is 1.5 m/s; and the number of workers in cells is between 4 and 6, with a speed of 2 m/s. The reader can download the source code and the simulation model to apply the methodology to other instances.</p>\n </div>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimising by Simulation-Based Optimisation the Cycle Time for the Line Balancing Problem in Real-World Environments\",\"authors\":\"Luis A. Moncayo–Martínez, Naihui He, Elias H. Arias–Nava\",\"doi\":\"10.1002/asmb.2925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In the context of Industry 4.0, a production line must be flexible and adaptable to stochastic or real-world environments. As a result, the assembly line balancing (ALB) problem involves managing uncertainty or stochasticity. Several methods have been proposed, including stochastic mathematical programming models and simulations. However, programming models can only incorporate a few sources of uncertainty that result in impractical or unfeasible solutions to implement due to overlooked complexities, while simulation is only used to test solutions from deterministic approaches or adjust parameters without maintaining their optimum value. The proposed methodology uses a deterministic mathematical model to minimize the cycle time, followed by the simulation to measure the impact of selected sources of uncertainty on the cycle time. Finally, the optimum value of the stochastic parameters is computed using simulation-based optimization to maintain the average cycle time close to the deterministic one. A real-life assembly line balancing problem for a motorcycle manufacturing company is solved to test the proposed methodology. The sources of uncertainty are the tasks' stochastic processing times, inter-arrival time, the number of workers in each station, and the speed of the material handling system. Results show that the average cycle time is above 2.7% from the deterministic value computed by the programming model when the inter-arrival time is set to 270 <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n <annotation>$$ \\\\pm $$</annotation>\\n </semantics></math> 60 s; the processing times are allowed to increase or decrease by 3 s; the material handling system's speed is 1.5 m/s; and the number of workers in cells is between 4 and 6, with a speed of 2 m/s. The reader can download the source code and the simulation model to apply the methodology to other instances.</p>\\n </div>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2925\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2925","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
在工业4.0的背景下,生产线必须灵活并适应随机或现实环境。因此,装配线平衡(ALB)问题涉及到管理不确定性或随机性。已经提出了几种方法,包括随机数学规划模型和模拟。然而,由于忽略了复杂性,编程模型只能包含一些不确定性来源,这些不确定性会导致不切实际或不可实现的解决方案,而仿真仅用于测试确定性方法的解决方案或调整参数而不保持其最佳值。所提出的方法使用确定性数学模型来最小化循环时间,然后通过模拟来测量选定的不确定性源对循环时间的影响。最后,采用仿真优化方法计算随机参数的最优值,使平均周期时间接近于确定性周期时间。以某摩托车制造公司的装配线平衡问题为例,对所提出的方法进行了验证。不确定性的来源是任务的随机处理时间、间隔到达时间、每个工位的工人数量和物料处理系统的速度。结果表明,平均循环时间在2.7以上% from the deterministic value computed by the programming model when the inter-arrival time is set to 270 ± $$ \pm $$ 60 s; the processing times are allowed to increase or decrease by 3 s; the material handling system's speed is 1.5 m/s; and the number of workers in cells is between 4 and 6, with a speed of 2 m/s. The reader can download the source code and the simulation model to apply the methodology to other instances.
Minimising by Simulation-Based Optimisation the Cycle Time for the Line Balancing Problem in Real-World Environments
In the context of Industry 4.0, a production line must be flexible and adaptable to stochastic or real-world environments. As a result, the assembly line balancing (ALB) problem involves managing uncertainty or stochasticity. Several methods have been proposed, including stochastic mathematical programming models and simulations. However, programming models can only incorporate a few sources of uncertainty that result in impractical or unfeasible solutions to implement due to overlooked complexities, while simulation is only used to test solutions from deterministic approaches or adjust parameters without maintaining their optimum value. The proposed methodology uses a deterministic mathematical model to minimize the cycle time, followed by the simulation to measure the impact of selected sources of uncertainty on the cycle time. Finally, the optimum value of the stochastic parameters is computed using simulation-based optimization to maintain the average cycle time close to the deterministic one. A real-life assembly line balancing problem for a motorcycle manufacturing company is solved to test the proposed methodology. The sources of uncertainty are the tasks' stochastic processing times, inter-arrival time, the number of workers in each station, and the speed of the material handling system. Results show that the average cycle time is above 2.7% from the deterministic value computed by the programming model when the inter-arrival time is set to 270 60 s; the processing times are allowed to increase or decrease by 3 s; the material handling system's speed is 1.5 m/s; and the number of workers in cells is between 4 and 6, with a speed of 2 m/s. The reader can download the source code and the simulation model to apply the methodology to other instances.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.