利用属性和团体缓解BGP路由泄漏:一种解决路径合理性的权宜之计

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nils Höger, Nils Rodday, Gabi Dreo Rodosek
{"title":"利用属性和团体缓解BGP路由泄漏:一种解决路径合理性的权宜之计","authors":"Nils Höger,&nbsp;Nils Rodday,&nbsp;Gabi Dreo Rodosek","doi":"10.1002/nem.70002","DOIUrl":null,"url":null,"abstract":"<p>The Border Gateway Protocol (BGP) is known to have serious security vulnerabilities. One of these vulnerabilities is BGP route leaks. A BGP route leak describes the propagation of route announcements beyond their intended scope, violating the Gao-Rexford model. Route leaks may lead to traffic misdirection, causing performance issues and potential security risks, often due to mistakes and misconfiguration. Several potential solutions have been published and are currently greatly discussed within the Internet Engineering Task Force (IETF) but have yet to be widely implemented. One approach is the Autonomous System Provider Authorization (ASPA). In addition to these new approaches, there are also efforts to use existing BGP functionalities to detect and prevent route leaks. In this paper, we implement the Down Only (DO) Community and Only to Customer (OTC) Attribute approaches, using them isolated and in conjunction with ASPA. Our research indicates that implementing a DO/OTC deployment strategy focusing on well-interconnected ASes could significantly reduce route leaks. Specifically, we observed mitigation of over 98% of all route leaks when DO and OTC were deployed by the top 5% of the most connected ASes. We show that combining DO/OTC and ASPA can greatly enhance ASPA's route leak prevention capabilities.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"35 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nem.70002","citationCount":"0","resultStr":"{\"title\":\"Mitigating BGP Route Leaks With Attributes and Communities: A Stopgap Solution for Path Plausibility\",\"authors\":\"Nils Höger,&nbsp;Nils Rodday,&nbsp;Gabi Dreo Rodosek\",\"doi\":\"10.1002/nem.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Border Gateway Protocol (BGP) is known to have serious security vulnerabilities. One of these vulnerabilities is BGP route leaks. A BGP route leak describes the propagation of route announcements beyond their intended scope, violating the Gao-Rexford model. Route leaks may lead to traffic misdirection, causing performance issues and potential security risks, often due to mistakes and misconfiguration. Several potential solutions have been published and are currently greatly discussed within the Internet Engineering Task Force (IETF) but have yet to be widely implemented. One approach is the Autonomous System Provider Authorization (ASPA). In addition to these new approaches, there are also efforts to use existing BGP functionalities to detect and prevent route leaks. In this paper, we implement the Down Only (DO) Community and Only to Customer (OTC) Attribute approaches, using them isolated and in conjunction with ASPA. Our research indicates that implementing a DO/OTC deployment strategy focusing on well-interconnected ASes could significantly reduce route leaks. Specifically, we observed mitigation of over 98% of all route leaks when DO and OTC were deployed by the top 5% of the most connected ASes. We show that combining DO/OTC and ASPA can greatly enhance ASPA's route leak prevention capabilities.</p>\",\"PeriodicalId\":14154,\"journal\":{\"name\":\"International Journal of Network Management\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nem.70002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Network Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nem.70002\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.70002","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,边界网关协议BGP (Border Gateway Protocol)存在严重的安全漏洞。其中一个漏洞是BGP路由泄漏。BGP路由泄漏描述了路由公告超出其预期范围的传播,违反了Gao-Rexford模型。路由泄漏可能导致流量方向错误,从而导致性能问题和潜在的安全风险,通常是由于错误和错误配置造成的。一些潜在的解决方案已经发表,并且目前在互联网工程任务组(IETF)内部进行了大量讨论,但尚未得到广泛实施。一种方法是自治系统提供者授权(ASPA)。除了这些新方法之外,也有人努力使用现有的BGP功能来检测和防止路由泄漏。在本文中,我们实现了Down Only (DO)社区和Only to Customer (OTC)属性方法,将它们与ASPA分离并结合使用。我们的研究表明,实施DO/OTC部署策略,重点关注互连良好的as,可以显著减少路由泄漏。具体来说,我们观察到,当连接最多的前5%的ase部署DO和OTC时,超过98%的路由泄漏得到缓解。研究表明,将DO/OTC与ASPA相结合可以大大提高ASPA的路由泄漏防护能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitigating BGP Route Leaks With Attributes and Communities: A Stopgap Solution for Path Plausibility

Mitigating BGP Route Leaks With Attributes and Communities: A Stopgap Solution for Path Plausibility

The Border Gateway Protocol (BGP) is known to have serious security vulnerabilities. One of these vulnerabilities is BGP route leaks. A BGP route leak describes the propagation of route announcements beyond their intended scope, violating the Gao-Rexford model. Route leaks may lead to traffic misdirection, causing performance issues and potential security risks, often due to mistakes and misconfiguration. Several potential solutions have been published and are currently greatly discussed within the Internet Engineering Task Force (IETF) but have yet to be widely implemented. One approach is the Autonomous System Provider Authorization (ASPA). In addition to these new approaches, there are also efforts to use existing BGP functionalities to detect and prevent route leaks. In this paper, we implement the Down Only (DO) Community and Only to Customer (OTC) Attribute approaches, using them isolated and in conjunction with ASPA. Our research indicates that implementing a DO/OTC deployment strategy focusing on well-interconnected ASes could significantly reduce route leaks. Specifically, we observed mitigation of over 98% of all route leaks when DO and OTC were deployed by the top 5% of the most connected ASes. We show that combining DO/OTC and ASPA can greatly enhance ASPA's route leak prevention capabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Network Management
International Journal of Network Management COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
5.10
自引率
6.70%
发文量
25
审稿时长
>12 weeks
期刊介绍: Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信