DFT对聚碳酸酯非催化氨解的见解

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC
Alexander Y. Samuilov, Amran Abdullah Ghilan Ali, Yakov D. Samuilov
{"title":"DFT对聚碳酸酯非催化氨解的见解","authors":"Alexander Y. Samuilov,&nbsp;Amran Abdullah Ghilan Ali,&nbsp;Yakov D. Samuilov","doi":"10.1002/poc.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The problem of environmental pollution by plastic is becoming more and more obvious. In this study, the non-catalytic reaction of diphenyl carbonate with methylamine as a model reaction for the depolymerization of polycarbonate was studied at the B3LYP/6-31++G(d,p) and M062X/6-31++G(d,p) levels. The reaction can proceed by the nucleophilic substitution and by the “addition–elimination” pathways. Calculations at the B3LYP/6-31++G(d,p) level indicate that the reaction of diphenyl carbonate with methylamine monomer leading to the formation of N-methyl-O-phenylcarbamate via the nucleophilic substitution pathway at 298 K is characterized by activation and reaction free energies equal to 174.0 and −57.1 kJ·mol<sup>−1</sup>. The same reaction with methylamine dimer is characterized by activation and reaction free energies equal to 147.1 and −77.7 kJ·mol<sup>−1</sup>, respectively. Thermodynamic and kinetic preference is also observed in the reaction of N-methyl-O-phenylcarbamate with the monomer and dimer of methylamine. Reactions with the formation of tetrahedral intermediates are unlikely. Their formation is endothermic and occurs with a decrease in entropy. This leads to small values of equilibrium constants. The equilibrium constant of the reaction of diphenyl carbonate with methylamine monomer to form a tetrahedral intermediate is 1.64·10<sup>−16</sup> at 298 K and 1.20·10<sup>−14</sup> at 423 K. The same trends are observed in the reactions of N-methyl-O-phenylcarbamate. The reactions of diphenyl carbonate, N-methyl-O-phenylcarbamate with methylamine dimer via the “addition–elimination” pathway are also characterized by small values of equilibrium constants. In all cases, interactions involving the methylamine dimer are more favorable than reactions involving the methylamine monomer.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT Insights Into Non-Catalytic Aminolysis of Polycarbonates\",\"authors\":\"Alexander Y. Samuilov,&nbsp;Amran Abdullah Ghilan Ali,&nbsp;Yakov D. Samuilov\",\"doi\":\"10.1002/poc.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The problem of environmental pollution by plastic is becoming more and more obvious. In this study, the non-catalytic reaction of diphenyl carbonate with methylamine as a model reaction for the depolymerization of polycarbonate was studied at the B3LYP/6-31++G(d,p) and M062X/6-31++G(d,p) levels. The reaction can proceed by the nucleophilic substitution and by the “addition–elimination” pathways. Calculations at the B3LYP/6-31++G(d,p) level indicate that the reaction of diphenyl carbonate with methylamine monomer leading to the formation of N-methyl-O-phenylcarbamate via the nucleophilic substitution pathway at 298 K is characterized by activation and reaction free energies equal to 174.0 and −57.1 kJ·mol<sup>−1</sup>. The same reaction with methylamine dimer is characterized by activation and reaction free energies equal to 147.1 and −77.7 kJ·mol<sup>−1</sup>, respectively. Thermodynamic and kinetic preference is also observed in the reaction of N-methyl-O-phenylcarbamate with the monomer and dimer of methylamine. Reactions with the formation of tetrahedral intermediates are unlikely. Their formation is endothermic and occurs with a decrease in entropy. This leads to small values of equilibrium constants. The equilibrium constant of the reaction of diphenyl carbonate with methylamine monomer to form a tetrahedral intermediate is 1.64·10<sup>−16</sup> at 298 K and 1.20·10<sup>−14</sup> at 423 K. The same trends are observed in the reactions of N-methyl-O-phenylcarbamate. The reactions of diphenyl carbonate, N-methyl-O-phenylcarbamate with methylamine dimer via the “addition–elimination” pathway are also characterized by small values of equilibrium constants. In all cases, interactions involving the methylamine dimer are more favorable than reactions involving the methylamine monomer.</p>\\n </div>\",\"PeriodicalId\":16829,\"journal\":{\"name\":\"Journal of Physical Organic Chemistry\",\"volume\":\"38 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/poc.70001\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.70001","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

塑料污染环境的问题变得越来越明显。本研究在B3LYP/6-31++G(d,p)和M062X/6-31++G(d,p)水平下,以碳酸二苯酯与甲胺的非催化反应为模型反应研究了聚碳酸酯的解聚反应。反应可通过亲核取代和加减途径进行。在B3LYP/6-31++G(d,p)水平上的计算表明,碳酸二苯酯与甲胺单体在298 K下通过亲核取代途径生成n -甲基-邻苯氨基甲酸酯,其活化能和反应自由能分别为174.0和- 57.1 kJ·mol−1。甲胺二聚体的活化能和反应自由能分别为147.1和- 77.7 kJ·mol−1。n -甲基-邻苯氨基甲酸酯与甲胺单体和二聚体的反应具有热力学和动力学上的优先性。形成四面体中间体的反应是不可能的。它们的形成是吸热的,并且随着熵的减小而发生。这导致平衡常数的值很小。碳酸二苯酯与甲胺单体反应生成四面体中间体的平衡常数在298 K时为1.64·10−16,在423 K时为1.20·10−14。在n -甲基-邻苯氨基甲酸酯的反应中也观察到同样的趋势。n -甲基-邻苯氨基甲酸酯碳酸二苯酯与甲胺二聚体的“加成-消去”反应的平衡常数也较小。在所有情况下,涉及甲胺二聚体的相互作用比涉及甲胺单体的反应更有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DFT Insights Into Non-Catalytic Aminolysis of Polycarbonates

DFT Insights Into Non-Catalytic Aminolysis of Polycarbonates

The problem of environmental pollution by plastic is becoming more and more obvious. In this study, the non-catalytic reaction of diphenyl carbonate with methylamine as a model reaction for the depolymerization of polycarbonate was studied at the B3LYP/6-31++G(d,p) and M062X/6-31++G(d,p) levels. The reaction can proceed by the nucleophilic substitution and by the “addition–elimination” pathways. Calculations at the B3LYP/6-31++G(d,p) level indicate that the reaction of diphenyl carbonate with methylamine monomer leading to the formation of N-methyl-O-phenylcarbamate via the nucleophilic substitution pathway at 298 K is characterized by activation and reaction free energies equal to 174.0 and −57.1 kJ·mol−1. The same reaction with methylamine dimer is characterized by activation and reaction free energies equal to 147.1 and −77.7 kJ·mol−1, respectively. Thermodynamic and kinetic preference is also observed in the reaction of N-methyl-O-phenylcarbamate with the monomer and dimer of methylamine. Reactions with the formation of tetrahedral intermediates are unlikely. Their formation is endothermic and occurs with a decrease in entropy. This leads to small values of equilibrium constants. The equilibrium constant of the reaction of diphenyl carbonate with methylamine monomer to form a tetrahedral intermediate is 1.64·10−16 at 298 K and 1.20·10−14 at 423 K. The same trends are observed in the reactions of N-methyl-O-phenylcarbamate. The reactions of diphenyl carbonate, N-methyl-O-phenylcarbamate with methylamine dimer via the “addition–elimination” pathway are also characterized by small values of equilibrium constants. In all cases, interactions involving the methylamine dimer are more favorable than reactions involving the methylamine monomer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信