5A染色体携带puroindoline基因的两个超软软红冬小麦种质的登记

IF 0.6 4区 农林科学 Q4 AGRONOMY
Fengyun Ma, Edward Souza, Anne Sturbaum, Byung-Kee Baik
{"title":"5A染色体携带puroindoline基因的两个超软软红冬小麦种质的登记","authors":"Fengyun Ma,&nbsp;Edward Souza,&nbsp;Anne Sturbaum,&nbsp;Byung-Kee Baik","doi":"10.1002/plr2.20419","DOIUrl":null,"url":null,"abstract":"<p>Kernel hardness is a primary determinant of the milling and end use quality of wheat (<i>Triticum aestivum</i> L.) and is largely genetically controlled by the <i>Pin</i> genes on chromosome 5D in common wheat. Wheat carrying the wild-type alleles of the <i>Pin</i> genes exhibits softer kernel texture, higher break flour yield, finer flour particle, and lower damaged starch content than wheat carrying one or two mutant alleles of the <i>Pin</i> genes. The USDA-ARS developed and released two extra-soft soft red winter (SRW) wheat germplasms, SWQL11-146-4 (Reg. no. GP-1100, PI 706439) and SWQL11-156-5 (Reg. no. GP-1101, PI 706440), by introgression of the <i>Pin</i> genes on chromosome 5A (<i>Pin 5A</i> genes) from a ‘Chinese Spring’ translocation line to SRW wheat cultivars. SWQL11-146-4 and SWQL11-156-5 were derived from the crosses of OH04-264-58*2//T5A<sup>m</sup>S-5AS∙5AL R#45/OH04-264-58/3/GA 991371-6E13 and Milton/T5A<sup>m</sup>S-5AS∙5AL R#45//3*USG 3555, respectively, and were grown in four different environments and analyzed for grain and milling characteristics and agronomic performance. Kernel hardness values averaged across environments were 0.7–1.4 in extra-soft wheat germplasms, 15.3–17.4 in their sibling lines without the <i>Pin 5A</i> genes (wild types), and 18.7-21.3 in recurrent parents. The break flour yields of SWQL11-146-4 and SWQL11-156-5 were significantly higher than those of the corresponding wild types and parents. SWQL11-146-4 had a higher test weight and flour yield than its wild types and parent. The introgression of the <i>Pin 5A</i> genes induced insignificant changes in kernel diameter and weight, grain protein content, and agronomic performance (heading date, plant height, and grain yield). These two extra-soft wheat germplasms would be valuable genetic resources for improving the milling and end use quality of soft wheat.</p>","PeriodicalId":16822,"journal":{"name":"Journal of Plant Registrations","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Registration of two extra-soft soft red winter wheat germplasms carrying the puroindoline genes on chromosome 5A\",\"authors\":\"Fengyun Ma,&nbsp;Edward Souza,&nbsp;Anne Sturbaum,&nbsp;Byung-Kee Baik\",\"doi\":\"10.1002/plr2.20419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kernel hardness is a primary determinant of the milling and end use quality of wheat (<i>Triticum aestivum</i> L.) and is largely genetically controlled by the <i>Pin</i> genes on chromosome 5D in common wheat. Wheat carrying the wild-type alleles of the <i>Pin</i> genes exhibits softer kernel texture, higher break flour yield, finer flour particle, and lower damaged starch content than wheat carrying one or two mutant alleles of the <i>Pin</i> genes. The USDA-ARS developed and released two extra-soft soft red winter (SRW) wheat germplasms, SWQL11-146-4 (Reg. no. GP-1100, PI 706439) and SWQL11-156-5 (Reg. no. GP-1101, PI 706440), by introgression of the <i>Pin</i> genes on chromosome 5A (<i>Pin 5A</i> genes) from a ‘Chinese Spring’ translocation line to SRW wheat cultivars. SWQL11-146-4 and SWQL11-156-5 were derived from the crosses of OH04-264-58*2//T5A<sup>m</sup>S-5AS∙5AL R#45/OH04-264-58/3/GA 991371-6E13 and Milton/T5A<sup>m</sup>S-5AS∙5AL R#45//3*USG 3555, respectively, and were grown in four different environments and analyzed for grain and milling characteristics and agronomic performance. Kernel hardness values averaged across environments were 0.7–1.4 in extra-soft wheat germplasms, 15.3–17.4 in their sibling lines without the <i>Pin 5A</i> genes (wild types), and 18.7-21.3 in recurrent parents. The break flour yields of SWQL11-146-4 and SWQL11-156-5 were significantly higher than those of the corresponding wild types and parents. SWQL11-146-4 had a higher test weight and flour yield than its wild types and parent. The introgression of the <i>Pin 5A</i> genes induced insignificant changes in kernel diameter and weight, grain protein content, and agronomic performance (heading date, plant height, and grain yield). These two extra-soft wheat germplasms would be valuable genetic resources for improving the milling and end use quality of soft wheat.</p>\",\"PeriodicalId\":16822,\"journal\":{\"name\":\"Journal of Plant Registrations\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Registrations\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/plr2.20419\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Registrations","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/plr2.20419","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

小麦籽粒硬度是小麦碾磨品质和最终利用品质的主要决定因素,主要由5D染色体上的Pin基因控制。与携带一个或两个Pin基因突变等位基因的小麦相比,携带Pin基因野生型等位基因的小麦籽粒质地更软,破粉率更高,粉粒更细,淀粉含量更低。USDA-ARS开发并发布了两个超软软红冬小麦(SRW)种质,SWQL11-146-4 (Reg。否。GP-1100, PI 706439)和SWQL11-156-5 (Reg;否。GP-1101, PI 706440),通过将“中国春”易位系5A染色体上的Pin基因(Pin 5A基因)渗入到SRW小麦品种中。SWQL11-146-4和SWQL11-156-5分别来自OH04-264-58*2//T5AmS-5AS∙5AL r# 45/OH04-264-58/3/GA 991371-6E13和Milton/T5AmS-5AS∙5AL r# 45//3*USG 3555的杂交品种,在4种不同环境下进行生长,分析籽粒和碾磨特性及农学性能。不同环境下,超软小麦种质的平均硬度值为0.7 ~ 1.4,无Pin 5A基因的兄弟系(野生型)的平均硬度值为15.3 ~ 17.4,亲本的平均硬度值为18.7 ~ 21.3。SWQL11-146-4和SWQL11-156-5的破粉产量显著高于相应野生型和亲本。SWQL11-146-4的试重和产粉量均高于其野生型和亲本。Pin 5A基因的渗入对籽粒直径、粒重、籽粒蛋白质含量、籽粒农艺性能(抽穗日期、株高和籽粒产量)的影响不显著。这两种超软质小麦种质将成为提高软质小麦制粉品质和最终利用品质的宝贵遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Registration of two extra-soft soft red winter wheat germplasms carrying the puroindoline genes on chromosome 5A

Kernel hardness is a primary determinant of the milling and end use quality of wheat (Triticum aestivum L.) and is largely genetically controlled by the Pin genes on chromosome 5D in common wheat. Wheat carrying the wild-type alleles of the Pin genes exhibits softer kernel texture, higher break flour yield, finer flour particle, and lower damaged starch content than wheat carrying one or two mutant alleles of the Pin genes. The USDA-ARS developed and released two extra-soft soft red winter (SRW) wheat germplasms, SWQL11-146-4 (Reg. no. GP-1100, PI 706439) and SWQL11-156-5 (Reg. no. GP-1101, PI 706440), by introgression of the Pin genes on chromosome 5A (Pin 5A genes) from a ‘Chinese Spring’ translocation line to SRW wheat cultivars. SWQL11-146-4 and SWQL11-156-5 were derived from the crosses of OH04-264-58*2//T5AmS-5AS∙5AL R#45/OH04-264-58/3/GA 991371-6E13 and Milton/T5AmS-5AS∙5AL R#45//3*USG 3555, respectively, and were grown in four different environments and analyzed for grain and milling characteristics and agronomic performance. Kernel hardness values averaged across environments were 0.7–1.4 in extra-soft wheat germplasms, 15.3–17.4 in their sibling lines without the Pin 5A genes (wild types), and 18.7-21.3 in recurrent parents. The break flour yields of SWQL11-146-4 and SWQL11-156-5 were significantly higher than those of the corresponding wild types and parents. SWQL11-146-4 had a higher test weight and flour yield than its wild types and parent. The introgression of the Pin 5A genes induced insignificant changes in kernel diameter and weight, grain protein content, and agronomic performance (heading date, plant height, and grain yield). These two extra-soft wheat germplasms would be valuable genetic resources for improving the milling and end use quality of soft wheat.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Registrations
Journal of Plant Registrations 农林科学-农艺学
CiteScore
1.60
自引率
37.50%
发文量
65
审稿时长
2 months
期刊介绍: The Journal of Plant Registrations is an official publication of the Crop Science Society of America and the premier international venue for plant breeders, geneticists, and genome biologists to publish research describing new and novel plant cultivars, germplasms, parental lines, genetic stocks, and genomic mapping populations. In addition to biomedical, nutritional, and agricultural scientists, the intended audience includes policy makers, humanitarian organizations, and all facets of food, feed, fiber, bioenergy, and shelter industries. The scope of articles includes (1) cultivar, germplasm, parental line, genetic stock, and mapping population registration manuscripts, (2) short manuscripts characterizing accessions held within Plant Germplasm Collection Systems, and (3) descriptions of plant genetic materials that have made a major impact on agricultural security. Registration of plant genetic resources, item (1) above, requires deposit of plant genetic material into the USDA ARS National Plant Germplasm System prior to publication. ­
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信