从堆叠元原子到空间级联元表面的电磁操纵演化

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Ying Han Wang, Cheng Pang, Yuzhong Wang, Jiaran Qi
{"title":"从堆叠元原子到空间级联元表面的电磁操纵演化","authors":"Ying Han Wang,&nbsp;Cheng Pang,&nbsp;Yuzhong Wang,&nbsp;Jiaran Qi","doi":"10.1002/andp.202400158","DOIUrl":null,"url":null,"abstract":"<p>Metasurfaces, known as planar two-dimensional (2D) metamaterials, are proposed to overcome obstacles like high loss and bulky volume occurring with three-dimensional (3D)metamaterials. Single-layer structures face limited degrees of freedom, and cannot satisfy the growing functional demands for meta-devices. To simplify the design process and gain more controllability, quasi-2D structures are introduced into metasurfaces in the form of stacked meta-atoms design or spatially cascaded metasurfaces. These configurations greatly expand the manipulation capability of metasurfaces and spawn a variety of functions and applications. In this review, the progress of metasurfaces with multi-layer stacked meta-atoms and spatially cascaded metasurfaces is presented. Progress is presented from metasurfaces with multi-layer stacked meta-atom configurations to spatially cascaded metasurfaces, focusing on the development of versatile applications for these quasi-2D configurations. Special attentions are paid to the diffractive deep neural networks(D<sup>2</sup>NNs), and a category of recently developed cascaded metasurfaces introduces a brand-new method into metasurface inverse designing as well as paves paths to all-optical computing. Finally, the promising avenues for such metasurfaces are discussed.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic Manipulation Evolution from Stacked Meta-Atoms to Spatially Cascaded Metasurfaces\",\"authors\":\"Ying Han Wang,&nbsp;Cheng Pang,&nbsp;Yuzhong Wang,&nbsp;Jiaran Qi\",\"doi\":\"10.1002/andp.202400158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metasurfaces, known as planar two-dimensional (2D) metamaterials, are proposed to overcome obstacles like high loss and bulky volume occurring with three-dimensional (3D)metamaterials. Single-layer structures face limited degrees of freedom, and cannot satisfy the growing functional demands for meta-devices. To simplify the design process and gain more controllability, quasi-2D structures are introduced into metasurfaces in the form of stacked meta-atoms design or spatially cascaded metasurfaces. These configurations greatly expand the manipulation capability of metasurfaces and spawn a variety of functions and applications. In this review, the progress of metasurfaces with multi-layer stacked meta-atoms and spatially cascaded metasurfaces is presented. Progress is presented from metasurfaces with multi-layer stacked meta-atom configurations to spatially cascaded metasurfaces, focusing on the development of versatile applications for these quasi-2D configurations. Special attentions are paid to the diffractive deep neural networks(D<sup>2</sup>NNs), and a category of recently developed cascaded metasurfaces introduces a brand-new method into metasurface inverse designing as well as paves paths to all-optical computing. Finally, the promising avenues for such metasurfaces are discussed.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"537 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400158\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400158","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超表面,被称为平面二维(2D)超材料,是为了克服三维(3D)超材料的高损耗和体积大等障碍而提出的。单层结构的自由度有限,不能满足元器件日益增长的功能需求。为了简化设计过程并获得更好的可控性,将准二维结构以堆叠元原子设计或空间级联的形式引入元表面。这些配置极大地扩展了元表面的操作能力,并产生了各种功能和应用程序。本文综述了多层堆叠元原子和空间级联元表面的研究进展。介绍了从具有多层堆叠元原子结构的元表面到空间级联的元表面的进展,重点介绍了这些准二维结构的通用应用的发展。对衍射深度神经网络(D2NNs)进行了特别的关注,最近发展的一类级联超表面为超表面反设计提供了一种全新的方法,为全光计算铺平了道路。最后,讨论了这类元表面的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electromagnetic Manipulation Evolution from Stacked Meta-Atoms to Spatially Cascaded Metasurfaces

Electromagnetic Manipulation Evolution from Stacked Meta-Atoms to Spatially Cascaded Metasurfaces

Metasurfaces, known as planar two-dimensional (2D) metamaterials, are proposed to overcome obstacles like high loss and bulky volume occurring with three-dimensional (3D)metamaterials. Single-layer structures face limited degrees of freedom, and cannot satisfy the growing functional demands for meta-devices. To simplify the design process and gain more controllability, quasi-2D structures are introduced into metasurfaces in the form of stacked meta-atoms design or spatially cascaded metasurfaces. These configurations greatly expand the manipulation capability of metasurfaces and spawn a variety of functions and applications. In this review, the progress of metasurfaces with multi-layer stacked meta-atoms and spatially cascaded metasurfaces is presented. Progress is presented from metasurfaces with multi-layer stacked meta-atom configurations to spatially cascaded metasurfaces, focusing on the development of versatile applications for these quasi-2D configurations. Special attentions are paid to the diffractive deep neural networks(D2NNs), and a category of recently developed cascaded metasurfaces introduces a brand-new method into metasurface inverse designing as well as paves paths to all-optical computing. Finally, the promising avenues for such metasurfaces are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信