交叉学习与面板数据模型的叠加和预测在欧洲的时间序列就业

IF 3.4 3区 经济学 Q1 ECONOMICS
Pietro Giorgio Lovaglio
{"title":"交叉学习与面板数据模型的叠加和预测在欧洲的时间序列就业","authors":"Pietro Giorgio Lovaglio","doi":"10.1002/for.3224","DOIUrl":null,"url":null,"abstract":"<p>This paper describes the use of cross-learning with panel data modeling for stacking regressions of different predictive models for time series employment across occupations in Europe during the last 15 years. The ARIMA and state space models were used for the predictions on the first-level model ensemble. On the second level, the time series predictions of these models were combined for stacking, using panel data estimators as a cross-learner and also exploiting the strong hierarchical data structure (time series nested in occupational groups). Very few methods adopt stacking to generate ensembles for time series regressions. Indeed, to the best of our knowledge, panel data modeling has never before been used as a cross-learner in staking strategies. Empirical application was used to fit employment by occupations in 30 European countries between 2010 Q1 and 2022 Q4, using the last year as the test set. The empirical results show that using panel data modeling as a multivariate time series cross-learner that stacks univariate time series base models—especially when they do not produce accurate predictions—is an alternative worthy of consideration, also with respect to such classical aggregation schemes as optimal and equal weighting.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 2","pages":"753-780"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3224","citationCount":"0","resultStr":"{\"title\":\"Cross-Learning With Panel Data Modeling for Stacking and Forecast Time Series Employment in Europe\",\"authors\":\"Pietro Giorgio Lovaglio\",\"doi\":\"10.1002/for.3224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper describes the use of cross-learning with panel data modeling for stacking regressions of different predictive models for time series employment across occupations in Europe during the last 15 years. The ARIMA and state space models were used for the predictions on the first-level model ensemble. On the second level, the time series predictions of these models were combined for stacking, using panel data estimators as a cross-learner and also exploiting the strong hierarchical data structure (time series nested in occupational groups). Very few methods adopt stacking to generate ensembles for time series regressions. Indeed, to the best of our knowledge, panel data modeling has never before been used as a cross-learner in staking strategies. Empirical application was used to fit employment by occupations in 30 European countries between 2010 Q1 and 2022 Q4, using the last year as the test set. The empirical results show that using panel data modeling as a multivariate time series cross-learner that stacks univariate time series base models—especially when they do not produce accurate predictions—is an alternative worthy of consideration, also with respect to such classical aggregation schemes as optimal and equal weighting.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":\"44 2\",\"pages\":\"753-780\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3224\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3224\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3224","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了使用交叉学习和面板数据建模对过去15年欧洲职业时间序列就业的不同预测模型进行叠加回归。利用ARIMA模型和状态空间模型对一级模型集合进行了预测。在第二层,将这些模型的时间序列预测组合起来进行堆叠,使用面板数据估计器作为交叉学习器,并利用强大的分层数据结构(嵌套在职业组中的时间序列)。很少有方法采用叠加来生成时间序列回归的集合。事实上,据我们所知,面板数据建模以前从未被用作赌注策略中的交叉学习者。使用实证应用程序来拟合30个欧洲国家在2010年第一季度至2022年第四季度之间的职业就业,使用去年作为测试集。实证结果表明,使用面板数据建模作为一个多变量时间序列交叉学习器,堆叠单变量时间序列基础模型,特别是当它们不能产生准确的预测时,是一个值得考虑的替代方案,也考虑到诸如最优和等权重的经典聚合方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cross-Learning With Panel Data Modeling for Stacking and Forecast Time Series Employment in Europe

Cross-Learning With Panel Data Modeling for Stacking and Forecast Time Series Employment in Europe

This paper describes the use of cross-learning with panel data modeling for stacking regressions of different predictive models for time series employment across occupations in Europe during the last 15 years. The ARIMA and state space models were used for the predictions on the first-level model ensemble. On the second level, the time series predictions of these models were combined for stacking, using panel data estimators as a cross-learner and also exploiting the strong hierarchical data structure (time series nested in occupational groups). Very few methods adopt stacking to generate ensembles for time series regressions. Indeed, to the best of our knowledge, panel data modeling has never before been used as a cross-learner in staking strategies. Empirical application was used to fit employment by occupations in 30 European countries between 2010 Q1 and 2022 Q4, using the last year as the test set. The empirical results show that using panel data modeling as a multivariate time series cross-learner that stacks univariate time series base models—especially when they do not produce accurate predictions—is an alternative worthy of consideration, also with respect to such classical aggregation schemes as optimal and equal weighting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信