James R. Smith, Anne M. Gillen, Shuxian Li, Hamed K. Abbas, Michael Sulyok, W. Thomas Shier, Alemu Mengistu, Guohong Cai, Jason D. Gillman
{"title":"大豆品种DS1260-2的登记,具有较强的耐成熟种子损伤和耐黄芥种子腐烂的特性","authors":"James R. Smith, Anne M. Gillen, Shuxian Li, Hamed K. Abbas, Michael Sulyok, W. Thomas Shier, Alemu Mengistu, Guohong Cai, Jason D. Gillman","doi":"10.1002/plr2.20417","DOIUrl":null,"url":null,"abstract":"<p>Damage to mature soybean [<i>Glycine max</i> (L.) Merr.] seed occurs when mature seeds are subjected to weathering, fungi, and insects under hot humid conditions. Such damage can be exacerbated by delays in harvest. Mature seed damage (MSD) causes lost revenue to both producers and processors, as well as lower quality of the seed, protein meal, and oil to consumers. The release of DS1260-2 (Reg. no. GP-531, PI 705148) by the USDA-ARS is part of our effort to increase soybean tolerance to mature seed damage using traditional plant breeding. Tolerance to MSD was derived from exotic accession Huang mao bai shui dou (PI 587982A) and incorporated through pedigree selection into an agronomically improved conventional late maturity group IV germplasm adapted for production in the midsouthern United States. DS1260-2 has significantly lower levels of seed damage than cultivars ‘P46T59R’, ‘AG4632’, and ‘P48A60X’, which manifests as lower incidence of <i>Diaporthe longicolla</i> (Hobbs) J.M. Santos (Syn. <i>Phomopsis longicolla</i> Hobbs), less seed coat wrinkling and visual mold, lower incidence of fungal metabolites (nivalenol, cercosporin, cytochalasins H and J, tryptophol, fusaric acid, and beauvericin), and higher seed germination. DS1260-2 yielded similar to P46T59R in trials over 4 years in Mississippi, but less than ‘AG46X6’, ‘AG48X9’, and ‘S16-7922C’ in regional testing. DS1260-2 is resistant to southern stem canker, frogeye leaf spot, and race 3 (HG type 0) of soybean cyst nematode. DS1260-2 is a valuable source for developing cultivars with improved tolerance to the MSD that is caused by mold and weathering.</p>","PeriodicalId":16822,"journal":{"name":"Journal of Plant Registrations","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Registration of soybean germplasm DS1260-2, with improved tolerance to mature seed damage and Phomopsis seed decay\",\"authors\":\"James R. Smith, Anne M. Gillen, Shuxian Li, Hamed K. Abbas, Michael Sulyok, W. Thomas Shier, Alemu Mengistu, Guohong Cai, Jason D. Gillman\",\"doi\":\"10.1002/plr2.20417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Damage to mature soybean [<i>Glycine max</i> (L.) Merr.] seed occurs when mature seeds are subjected to weathering, fungi, and insects under hot humid conditions. Such damage can be exacerbated by delays in harvest. Mature seed damage (MSD) causes lost revenue to both producers and processors, as well as lower quality of the seed, protein meal, and oil to consumers. The release of DS1260-2 (Reg. no. GP-531, PI 705148) by the USDA-ARS is part of our effort to increase soybean tolerance to mature seed damage using traditional plant breeding. Tolerance to MSD was derived from exotic accession Huang mao bai shui dou (PI 587982A) and incorporated through pedigree selection into an agronomically improved conventional late maturity group IV germplasm adapted for production in the midsouthern United States. DS1260-2 has significantly lower levels of seed damage than cultivars ‘P46T59R’, ‘AG4632’, and ‘P48A60X’, which manifests as lower incidence of <i>Diaporthe longicolla</i> (Hobbs) J.M. Santos (Syn. <i>Phomopsis longicolla</i> Hobbs), less seed coat wrinkling and visual mold, lower incidence of fungal metabolites (nivalenol, cercosporin, cytochalasins H and J, tryptophol, fusaric acid, and beauvericin), and higher seed germination. DS1260-2 yielded similar to P46T59R in trials over 4 years in Mississippi, but less than ‘AG46X6’, ‘AG48X9’, and ‘S16-7922C’ in regional testing. DS1260-2 is resistant to southern stem canker, frogeye leaf spot, and race 3 (HG type 0) of soybean cyst nematode. DS1260-2 is a valuable source for developing cultivars with improved tolerance to the MSD that is caused by mold and weathering.</p>\",\"PeriodicalId\":16822,\"journal\":{\"name\":\"Journal of Plant Registrations\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Registrations\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/plr2.20417\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Registrations","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/plr2.20417","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
Registration of soybean germplasm DS1260-2, with improved tolerance to mature seed damage and Phomopsis seed decay
Damage to mature soybean [Glycine max (L.) Merr.] seed occurs when mature seeds are subjected to weathering, fungi, and insects under hot humid conditions. Such damage can be exacerbated by delays in harvest. Mature seed damage (MSD) causes lost revenue to both producers and processors, as well as lower quality of the seed, protein meal, and oil to consumers. The release of DS1260-2 (Reg. no. GP-531, PI 705148) by the USDA-ARS is part of our effort to increase soybean tolerance to mature seed damage using traditional plant breeding. Tolerance to MSD was derived from exotic accession Huang mao bai shui dou (PI 587982A) and incorporated through pedigree selection into an agronomically improved conventional late maturity group IV germplasm adapted for production in the midsouthern United States. DS1260-2 has significantly lower levels of seed damage than cultivars ‘P46T59R’, ‘AG4632’, and ‘P48A60X’, which manifests as lower incidence of Diaporthe longicolla (Hobbs) J.M. Santos (Syn. Phomopsis longicolla Hobbs), less seed coat wrinkling and visual mold, lower incidence of fungal metabolites (nivalenol, cercosporin, cytochalasins H and J, tryptophol, fusaric acid, and beauvericin), and higher seed germination. DS1260-2 yielded similar to P46T59R in trials over 4 years in Mississippi, but less than ‘AG46X6’, ‘AG48X9’, and ‘S16-7922C’ in regional testing. DS1260-2 is resistant to southern stem canker, frogeye leaf spot, and race 3 (HG type 0) of soybean cyst nematode. DS1260-2 is a valuable source for developing cultivars with improved tolerance to the MSD that is caused by mold and weathering.
期刊介绍:
The Journal of Plant Registrations is an official publication of the Crop Science Society of America and the premier international venue for plant breeders, geneticists, and genome biologists to publish research describing new and novel plant cultivars, germplasms, parental lines, genetic stocks, and genomic mapping populations. In addition to biomedical, nutritional, and agricultural scientists, the intended audience includes policy makers, humanitarian organizations, and all facets of food, feed, fiber, bioenergy, and shelter industries. The scope of articles includes (1) cultivar, germplasm, parental line, genetic stock, and mapping population registration manuscripts, (2) short manuscripts characterizing accessions held within Plant Germplasm Collection Systems, and (3) descriptions of plant genetic materials that have made a major impact on agricultural security. Registration of plant genetic resources, item (1) above, requires deposit of plant genetic material into the USDA ARS National Plant Germplasm System prior to publication.