{"title":"Rubber latex-assisted improvement of nano-zinc oxide dispersion in high density polyethylene matrix: A study on the effect of latex type and proportioning\n Kautschuklatex-unterstützte Verbesserung der Nano-Zinkoxid-Dispersion in einer hochdichten Polyethylen-Matrix: Eine Studie über den Einfluss von Latex-Typ und Dosierung","authors":"J. Li, W. Mou, X. Li, J. Zhu, C. Hu","doi":"10.1002/mawe.202300383","DOIUrl":null,"url":null,"abstract":"<p>Herein, the type of latex and its ratio to nano-zinc oxide have been investigated for the effectiveness of latex-assisted dispersion of nano-zinc oxide. By analyzing the mixed state of latex and nano-zinc oxide after the addition of coagulants, as well as physical and scanning electron microscope of corresponding composite materials, it was determined that natural rubber latex has the best auxiliary dispersion effect. Based on this result, the effect of the ratio of natural latex to zinc oxide nanoparticles was further investigated. Result showed that when the ratio of the two was too small, the nano-zinc oxide in the rubber particles would cause the natural rubber latex to fail to solidify rapidly. When the ratio of the two was 2 : 1, the natural rubber latex rapidly solidify and encapsulate the nano-zinc oxide. Eventually dispersed uniformly in the high density polyethylene matrix. Based on these results, the corresponding composites have a corrected notched impact strength of 142.6 kJ⋅m<sup>−2</sup> and a tensile strength of 24.2 MPa. They also have excellent electrical insulation properties. These two properties are retained at a high rate after aging., This work further refines the latex-assisted dispersion method and can improve the potential of the method for industrial applications.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 1","pages":"144-154"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300383","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Rubber latex-assisted improvement of nano-zinc oxide dispersion in high density polyethylene matrix: A study on the effect of latex type and proportioning
Kautschuklatex-unterstützte Verbesserung der Nano-Zinkoxid-Dispersion in einer hochdichten Polyethylen-Matrix: Eine Studie über den Einfluss von Latex-Typ und Dosierung
Herein, the type of latex and its ratio to nano-zinc oxide have been investigated for the effectiveness of latex-assisted dispersion of nano-zinc oxide. By analyzing the mixed state of latex and nano-zinc oxide after the addition of coagulants, as well as physical and scanning electron microscope of corresponding composite materials, it was determined that natural rubber latex has the best auxiliary dispersion effect. Based on this result, the effect of the ratio of natural latex to zinc oxide nanoparticles was further investigated. Result showed that when the ratio of the two was too small, the nano-zinc oxide in the rubber particles would cause the natural rubber latex to fail to solidify rapidly. When the ratio of the two was 2 : 1, the natural rubber latex rapidly solidify and encapsulate the nano-zinc oxide. Eventually dispersed uniformly in the high density polyethylene matrix. Based on these results, the corresponding composites have a corrected notched impact strength of 142.6 kJ⋅m−2 and a tensile strength of 24.2 MPa. They also have excellent electrical insulation properties. These two properties are retained at a high rate after aging., This work further refines the latex-assisted dispersion method and can improve the potential of the method for industrial applications.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.