Chirag N. Patel, Adeeba Shakeel, Raghvendra Mall, Khadija M. Alawi, Ivan V. Ozerov, Alex Zhavoronkov, Filippo Castiglione
{"title":"重新设计已撤销药物以提高疗效和安全性的策略综述","authors":"Chirag N. Patel, Adeeba Shakeel, Raghvendra Mall, Khadija M. Alawi, Ivan V. Ozerov, Alex Zhavoronkov, Filippo Castiglione","doi":"10.1002/wcms.70004","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Drug toxicity and market withdrawals are two issues that often obstruct the lengthy and intricate drug discovery process. In order to enhance drug effectiveness and safety, this review examines withdrawn drugs and presents a novel paradigm for their redesign. In addition to addressing methodological issues with toxicity datasets, this study highlights important shortcomings in in silico drug toxicity prediction models and suggests solutions. High-throughput screening (HTS) has greatly progressed with the advent of 3D organoid and organ-on-chip (OoC) technologies, which provide physiologically appropriate systems that replicate the structure and function of human tissue. These systems provide accurate, human-relevant data for drug development, toxicity evaluation, and disease modeling, overcoming the limitations of traditional 2D cell cultures and animal models. Their integration into HTS pipelines has shown to have a major influence, promoting drug redesign efforts and enabling improved accuracy in preclinical research. The potential of fragment-based drug discovery to enhance pharmacokinetics (PK) and pharmacodynamics (PD) when combined with conventional techniques is highlighted in this study. The limits of animal models are discussed, with a focus on the need of bioengineered humanized systems such OoC technologies and 3D organoids. To improve drug candidate screening and simulate real illnesses, advanced models are crucial. This leads to improved target affinity and fewer adverse effects.</p>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for Redesigning Withdrawn Drugs to Enhance Therapeutic Efficacy and Safety: A Review\",\"authors\":\"Chirag N. Patel, Adeeba Shakeel, Raghvendra Mall, Khadija M. Alawi, Ivan V. Ozerov, Alex Zhavoronkov, Filippo Castiglione\",\"doi\":\"10.1002/wcms.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Drug toxicity and market withdrawals are two issues that often obstruct the lengthy and intricate drug discovery process. In order to enhance drug effectiveness and safety, this review examines withdrawn drugs and presents a novel paradigm for their redesign. In addition to addressing methodological issues with toxicity datasets, this study highlights important shortcomings in in silico drug toxicity prediction models and suggests solutions. High-throughput screening (HTS) has greatly progressed with the advent of 3D organoid and organ-on-chip (OoC) technologies, which provide physiologically appropriate systems that replicate the structure and function of human tissue. These systems provide accurate, human-relevant data for drug development, toxicity evaluation, and disease modeling, overcoming the limitations of traditional 2D cell cultures and animal models. Their integration into HTS pipelines has shown to have a major influence, promoting drug redesign efforts and enabling improved accuracy in preclinical research. The potential of fragment-based drug discovery to enhance pharmacokinetics (PK) and pharmacodynamics (PD) when combined with conventional techniques is highlighted in this study. The limits of animal models are discussed, with a focus on the need of bioengineered humanized systems such OoC technologies and 3D organoids. To improve drug candidate screening and simulate real illnesses, advanced models are crucial. This leads to improved target affinity and fewer adverse effects.</p>\\n </div>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70004\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70004","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Strategies for Redesigning Withdrawn Drugs to Enhance Therapeutic Efficacy and Safety: A Review
Drug toxicity and market withdrawals are two issues that often obstruct the lengthy and intricate drug discovery process. In order to enhance drug effectiveness and safety, this review examines withdrawn drugs and presents a novel paradigm for their redesign. In addition to addressing methodological issues with toxicity datasets, this study highlights important shortcomings in in silico drug toxicity prediction models and suggests solutions. High-throughput screening (HTS) has greatly progressed with the advent of 3D organoid and organ-on-chip (OoC) technologies, which provide physiologically appropriate systems that replicate the structure and function of human tissue. These systems provide accurate, human-relevant data for drug development, toxicity evaluation, and disease modeling, overcoming the limitations of traditional 2D cell cultures and animal models. Their integration into HTS pipelines has shown to have a major influence, promoting drug redesign efforts and enabling improved accuracy in preclinical research. The potential of fragment-based drug discovery to enhance pharmacokinetics (PK) and pharmacodynamics (PD) when combined with conventional techniques is highlighted in this study. The limits of animal models are discussed, with a focus on the need of bioengineered humanized systems such OoC technologies and 3D organoids. To improve drug candidate screening and simulate real illnesses, advanced models are crucial. This leads to improved target affinity and fewer adverse effects.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.