DLKUNet:一种轻量级、高效的深度大核医学图像分割网络

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Junan Zhu, Zhizhe Tang, Ping Ma, Zheng Liang, Chuanjian Wang
{"title":"DLKUNet:一种轻量级、高效的深度大核医学图像分割网络","authors":"Junan Zhu,&nbsp;Zhizhe Tang,&nbsp;Ping Ma,&nbsp;Zheng Liang,&nbsp;Chuanjian Wang","doi":"10.1002/ima.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate multi-organ segmentation is crucial in computer-aided diagnosis, surgical navigation, and radiotherapy. Deep learning-based methods for automated multi-organ segmentation have made significant progress recently. However, these improvements often increase model complexity, leading to higher computational costs. To address this problem, we propose a lightweight and efficient network with depthwise large kernel, called DLKUNet. Firstly, we utilize a hierarchical architecture with large kernel convolution to effectively capture multi-scale features. Secondly, we constructed three segmentation models with different layers to meet different speed and accuracy requirements. Additionally, we employ a novel training strategy that works seamlessly with this module to enhance performance. Finally, we conducted extensive experiments on the multi-organ abdominal segmentation (Synapse) and the Automated Cardiac Diagnosis Challenge (ACDC) dataset. DLKUNet-L significantly improves the 95% Hausdorff Distance to 13.89 mm with 65% parameters of Swin-Unet on the Synapse. Furthermore, DLKUNet-S and DLKUNet-M use only 4.5% and 16.52% parameters of Swin-Unet, achieving Dice Similarity Coefficient 91.71% and 91.74% on the ACDC. These results underscore the proposed model's superior performance in terms of accuracy, efficiency, and practical applicability.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DLKUNet: A Lightweight and Efficient Network With Depthwise Large Kernel for Medical Image Segmentation\",\"authors\":\"Junan Zhu,&nbsp;Zhizhe Tang,&nbsp;Ping Ma,&nbsp;Zheng Liang,&nbsp;Chuanjian Wang\",\"doi\":\"10.1002/ima.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Accurate multi-organ segmentation is crucial in computer-aided diagnosis, surgical navigation, and radiotherapy. Deep learning-based methods for automated multi-organ segmentation have made significant progress recently. However, these improvements often increase model complexity, leading to higher computational costs. To address this problem, we propose a lightweight and efficient network with depthwise large kernel, called DLKUNet. Firstly, we utilize a hierarchical architecture with large kernel convolution to effectively capture multi-scale features. Secondly, we constructed three segmentation models with different layers to meet different speed and accuracy requirements. Additionally, we employ a novel training strategy that works seamlessly with this module to enhance performance. Finally, we conducted extensive experiments on the multi-organ abdominal segmentation (Synapse) and the Automated Cardiac Diagnosis Challenge (ACDC) dataset. DLKUNet-L significantly improves the 95% Hausdorff Distance to 13.89 mm with 65% parameters of Swin-Unet on the Synapse. Furthermore, DLKUNet-S and DLKUNet-M use only 4.5% and 16.52% parameters of Swin-Unet, achieving Dice Similarity Coefficient 91.71% and 91.74% on the ACDC. These results underscore the proposed model's superior performance in terms of accuracy, efficiency, and practical applicability.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70035\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

准确的多器官分割在计算机辅助诊断、手术导航和放射治疗中至关重要。基于深度学习的多器官自动分割方法近年来取得了重大进展。然而,这些改进通常会增加模型的复杂性,从而导致更高的计算成本。为了解决这个问题,我们提出了一个具有深度大内核的轻量级高效网络,称为DLKUNet。首先,我们利用大核卷积的层次结构来有效地捕获多尺度特征。其次,我们构建了三种不同层次的分割模型,以满足不同的速度和精度要求。此外,我们采用了一种新颖的培训策略,与该模块无缝配合,以提高绩效。最后,我们在多器官腹部分割(Synapse)和心脏自动诊断挑战(ACDC)数据集上进行了广泛的实验。DLKUNet-L显著提高了95%的Hausdorff距离至13.89 mm,在突触上有65%的swwin - unet参数。此外,DLKUNet-S和DLKUNet-M仅使用了swun - unet的4.5%和16.52%的参数,在ACDC上的骰子相似系数分别为91.71%和91.74%。这些结果表明了该模型在准确性、效率和实用性方面的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DLKUNet: A Lightweight and Efficient Network With Depthwise Large Kernel for Medical Image Segmentation

Accurate multi-organ segmentation is crucial in computer-aided diagnosis, surgical navigation, and radiotherapy. Deep learning-based methods for automated multi-organ segmentation have made significant progress recently. However, these improvements often increase model complexity, leading to higher computational costs. To address this problem, we propose a lightweight and efficient network with depthwise large kernel, called DLKUNet. Firstly, we utilize a hierarchical architecture with large kernel convolution to effectively capture multi-scale features. Secondly, we constructed three segmentation models with different layers to meet different speed and accuracy requirements. Additionally, we employ a novel training strategy that works seamlessly with this module to enhance performance. Finally, we conducted extensive experiments on the multi-organ abdominal segmentation (Synapse) and the Automated Cardiac Diagnosis Challenge (ACDC) dataset. DLKUNet-L significantly improves the 95% Hausdorff Distance to 13.89 mm with 65% parameters of Swin-Unet on the Synapse. Furthermore, DLKUNet-S and DLKUNet-M use only 4.5% and 16.52% parameters of Swin-Unet, achieving Dice Similarity Coefficient 91.71% and 91.74% on the ACDC. These results underscore the proposed model's superior performance in terms of accuracy, efficiency, and practical applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信