{"title":"潜水交换对黄土高原北罗河微生物群落结构和功能的影响——以北罗河为例","authors":"Bin Tang, Jinxi Song, Junlong Zhang, Adnanul Rehman, Bingjie Li, Yongqing Long, Nan Li, Ruichen Mao, Jiayuan Feng, Junhang Chen, Shengsheng Zhou, Yue Qu","doi":"10.1111/fwb.14361","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>\n \n </p><ol>\n \n \n <li>Microbial communities in riverine hyporheic zones provide essential ecosystem services. However, the mechanisms whereby they respond to hyporheic water exchange under different habitat stress conditions remain poorly understood. Therefore, investigating the impact of riverine hyporheic exchange on the microbial community composition and its potential ecological function is essential, particularly in the seasonal rivers of northern China.</li>\n \n \n <li>To elucidate the structure and function of hyporheic zone sediment microbial communities in response hyporheic exchange and environmental fluctuations, we examined associations by performing in situ falling-head permeameter tests and eDNA techniques.</li>\n \n \n <li>The primary findings were as follows: (1) We detected variations in the spatial distribution patterns of streambed hydraulic conductivity (range, 0.055–3.490 m/day) and vertical fluxes (range, 1.886–342.0 mm/day) among different monitoring stations. (2) Microbial communities displayed compositional similarities and spatial heterogeneity. Stations with limited vertical exchange were characterised by reduced species diversity. (3) Prokaryotes showed better modularity characteristics with higher stability and functional diversity than eukaryotic communities. (4) Differences in the abundance of microbial metabolism and genetic functions were observed among different habitats.</li>\n \n \n <li>This study emphasises the significance of local hydrological patterns (such as downwelling) in maintaining riverine environmental elements and acting as hotspots for microbial diversity within the hyporheic zone. The heterogeneity of the hydrological patterns governing hyporheic water exchange can explain the abundance, species diversity and biogeochemical processes of microorganisms within this zone.</li>\n </ol>\n \n </div>","PeriodicalId":12365,"journal":{"name":"Freshwater Biology","volume":"70 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Hyporheic Water Exchange on Microbial Community Structure and Function: A Case Study in the Beiluo River, Loess Plateau, China\",\"authors\":\"Bin Tang, Jinxi Song, Junlong Zhang, Adnanul Rehman, Bingjie Li, Yongqing Long, Nan Li, Ruichen Mao, Jiayuan Feng, Junhang Chen, Shengsheng Zhou, Yue Qu\",\"doi\":\"10.1111/fwb.14361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>\\n \\n </p><ol>\\n \\n \\n <li>Microbial communities in riverine hyporheic zones provide essential ecosystem services. However, the mechanisms whereby they respond to hyporheic water exchange under different habitat stress conditions remain poorly understood. Therefore, investigating the impact of riverine hyporheic exchange on the microbial community composition and its potential ecological function is essential, particularly in the seasonal rivers of northern China.</li>\\n \\n \\n <li>To elucidate the structure and function of hyporheic zone sediment microbial communities in response hyporheic exchange and environmental fluctuations, we examined associations by performing in situ falling-head permeameter tests and eDNA techniques.</li>\\n \\n \\n <li>The primary findings were as follows: (1) We detected variations in the spatial distribution patterns of streambed hydraulic conductivity (range, 0.055–3.490 m/day) and vertical fluxes (range, 1.886–342.0 mm/day) among different monitoring stations. (2) Microbial communities displayed compositional similarities and spatial heterogeneity. Stations with limited vertical exchange were characterised by reduced species diversity. (3) Prokaryotes showed better modularity characteristics with higher stability and functional diversity than eukaryotic communities. (4) Differences in the abundance of microbial metabolism and genetic functions were observed among different habitats.</li>\\n \\n \\n <li>This study emphasises the significance of local hydrological patterns (such as downwelling) in maintaining riverine environmental elements and acting as hotspots for microbial diversity within the hyporheic zone. The heterogeneity of the hydrological patterns governing hyporheic water exchange can explain the abundance, species diversity and biogeochemical processes of microorganisms within this zone.</li>\\n </ol>\\n \\n </div>\",\"PeriodicalId\":12365,\"journal\":{\"name\":\"Freshwater Biology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Freshwater Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/fwb.14361\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Freshwater Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/fwb.14361","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Effects of Hyporheic Water Exchange on Microbial Community Structure and Function: A Case Study in the Beiluo River, Loess Plateau, China
Microbial communities in riverine hyporheic zones provide essential ecosystem services. However, the mechanisms whereby they respond to hyporheic water exchange under different habitat stress conditions remain poorly understood. Therefore, investigating the impact of riverine hyporheic exchange on the microbial community composition and its potential ecological function is essential, particularly in the seasonal rivers of northern China.
To elucidate the structure and function of hyporheic zone sediment microbial communities in response hyporheic exchange and environmental fluctuations, we examined associations by performing in situ falling-head permeameter tests and eDNA techniques.
The primary findings were as follows: (1) We detected variations in the spatial distribution patterns of streambed hydraulic conductivity (range, 0.055–3.490 m/day) and vertical fluxes (range, 1.886–342.0 mm/day) among different monitoring stations. (2) Microbial communities displayed compositional similarities and spatial heterogeneity. Stations with limited vertical exchange were characterised by reduced species diversity. (3) Prokaryotes showed better modularity characteristics with higher stability and functional diversity than eukaryotic communities. (4) Differences in the abundance of microbial metabolism and genetic functions were observed among different habitats.
This study emphasises the significance of local hydrological patterns (such as downwelling) in maintaining riverine environmental elements and acting as hotspots for microbial diversity within the hyporheic zone. The heterogeneity of the hydrological patterns governing hyporheic water exchange can explain the abundance, species diversity and biogeochemical processes of microorganisms within this zone.
期刊介绍:
Freshwater Biology publishes papers on all aspects of the ecology of inland waters, including rivers and lakes, ground waters, flood plains and other freshwater wetlands. We include studies of micro-organisms, algae, macrophytes, invertebrates, fish and other vertebrates, as well as those concerning whole systems and related physical and chemical aspects of the environment, provided that they have clear biological relevance.
Studies may focus at any level in the ecological hierarchy from physiological ecology and animal behaviour, through population dynamics and evolutionary genetics, to community interactions, biogeography and ecosystem functioning. They may also be at any scale: from microhabitat to landscape, and continental to global. Preference is given to research, whether meta-analytical, experimental, theoretical or descriptive, highlighting causal (ecological) mechanisms from which clearly stated hypotheses are derived. Manuscripts with an experimental or conceptual flavour are particularly welcome, as are those or which integrate laboratory and field work, and studies from less well researched areas of the world. Priority is given to submissions that are likely to interest a wide range of readers.
We encourage submission of papers well grounded in ecological theory that deal with issues related to the conservation and management of inland waters. Papers interpreting fundamental research in a way that makes clear its applied, strategic or socio-economic relevance are also welcome.
Review articles (FRESHWATER BIOLOGY REVIEWS) and discussion papers (OPINION) are also invited: these enable authors to publish high-quality material outside the constraints of standard research papers.