{"title":"股票市场中多源高维混频风险的探索:一种组惩罚反向无限制混合数据抽样方法","authors":"Xingxuan Zhuo, Shunfei Luo, Yan Cao","doi":"10.1002/for.3191","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper introduces a novel forecasting approach that addresses a significant challenge in applied research: effectively utilizing high-dimensional and mixed-frequency data from multiple sources to explain and predict variables that respond at high frequency. This approach combines a mixed data sampling model and group variable selection methods, resulting in the development of the Group Penalized Reverse Unrestricted Mixed Data Sampling Model (GP-RU-MIDAS). The GP-RU-MIDAS model is designed to achieve various research objectives, including analyzing mixed-frequency data in reverse, estimating high-dimensional parameters, identifying key variables, and analyzing their relative importance and sensitivity. By applying this model to uncover uncertainties in stock market returns, the following notable results emerge: (1) GP-RU-MIDAS improves the selection of relevant variables and enhances forecasting accuracy; (2) various risks impact stock market returns in diverse ways, with effects varying over time and exhibiting continuous trends, phase shifts, or extreme levels; and (3) stock market volatility and the Euro to RMB exchange rate significantly influence stock market returns over different forecasting periods, with a generally positive and dynamic impact. In conclusion, the GP-RU-MIDAS model demonstrates robustness and utility in complex data analysis scenarios, providing insights into the nuanced realm of stock market risk assessment.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 2","pages":"459-473"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Multisource High-Dimensional Mixed-Frequency Risks in the Stock Market: A Group Penalized Reverse Unrestricted Mixed Data Sampling Approach\",\"authors\":\"Xingxuan Zhuo, Shunfei Luo, Yan Cao\",\"doi\":\"10.1002/for.3191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper introduces a novel forecasting approach that addresses a significant challenge in applied research: effectively utilizing high-dimensional and mixed-frequency data from multiple sources to explain and predict variables that respond at high frequency. This approach combines a mixed data sampling model and group variable selection methods, resulting in the development of the Group Penalized Reverse Unrestricted Mixed Data Sampling Model (GP-RU-MIDAS). The GP-RU-MIDAS model is designed to achieve various research objectives, including analyzing mixed-frequency data in reverse, estimating high-dimensional parameters, identifying key variables, and analyzing their relative importance and sensitivity. By applying this model to uncover uncertainties in stock market returns, the following notable results emerge: (1) GP-RU-MIDAS improves the selection of relevant variables and enhances forecasting accuracy; (2) various risks impact stock market returns in diverse ways, with effects varying over time and exhibiting continuous trends, phase shifts, or extreme levels; and (3) stock market volatility and the Euro to RMB exchange rate significantly influence stock market returns over different forecasting periods, with a generally positive and dynamic impact. In conclusion, the GP-RU-MIDAS model demonstrates robustness and utility in complex data analysis scenarios, providing insights into the nuanced realm of stock market risk assessment.</p>\\n </div>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":\"44 2\",\"pages\":\"459-473\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3191\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3191","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Exploring Multisource High-Dimensional Mixed-Frequency Risks in the Stock Market: A Group Penalized Reverse Unrestricted Mixed Data Sampling Approach
This paper introduces a novel forecasting approach that addresses a significant challenge in applied research: effectively utilizing high-dimensional and mixed-frequency data from multiple sources to explain and predict variables that respond at high frequency. This approach combines a mixed data sampling model and group variable selection methods, resulting in the development of the Group Penalized Reverse Unrestricted Mixed Data Sampling Model (GP-RU-MIDAS). The GP-RU-MIDAS model is designed to achieve various research objectives, including analyzing mixed-frequency data in reverse, estimating high-dimensional parameters, identifying key variables, and analyzing their relative importance and sensitivity. By applying this model to uncover uncertainties in stock market returns, the following notable results emerge: (1) GP-RU-MIDAS improves the selection of relevant variables and enhances forecasting accuracy; (2) various risks impact stock market returns in diverse ways, with effects varying over time and exhibiting continuous trends, phase shifts, or extreme levels; and (3) stock market volatility and the Euro to RMB exchange rate significantly influence stock market returns over different forecasting periods, with a generally positive and dynamic impact. In conclusion, the GP-RU-MIDAS model demonstrates robustness and utility in complex data analysis scenarios, providing insights into the nuanced realm of stock market risk assessment.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.