基于需求预测的铁路交通实时管理框架的制定与解决方案

IF 2.5 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Bianca Pascariu, Johan Victor Flensburg, Paola Pellegrini, Carlos M. Lima Azevedo
{"title":"基于需求预测的铁路交通实时管理框架的制定与解决方案","authors":"Bianca Pascariu,&nbsp;Johan Victor Flensburg,&nbsp;Paola Pellegrini,&nbsp;Carlos M. Lima Azevedo","doi":"10.1049/itr2.12610","DOIUrl":null,"url":null,"abstract":"<p>Recent transport policies increasingly promote shifts towards rail travel aiming at a more sustainable transportation system. This shift is hampered by widespread unexpected perturbations in operations, resulting in perceived poor punctuality and reliability. When prevention of such perturbations is not feasible, traffic management must mitigate their effects, resolving arising conflicts to restore regular train operations and minimize delay. Current practice generally includes the assessment of railway performance in terms of train delays, but the quality of service to passengers is rarely explicitly accounted for. A railway traffic management framework is proposed that accounts for both passenger and train delays. To do so, a predictive optimization framework is proposed, integrating a demand prediction module, a passenger demand assignment module and a traffic management module. The first dynamically predicts future origin-destination passenger flows using linear regression on real-time observed smart card data. Then, the demand assignment module links predicted passengers to specific train paths, given a railway schedule. Finally, the traffic management module optimizes train scheduling and routing in real time, under the combined objective of minimizing train and passenger delays. The methodology is validated and benchmarked against equivalent passenger agnostic traffic management on a case study of the Copenhagen suburban railway network. The results show that it is possible to take into account passenger perspective in railway traffic management, without reducing the railway system efficiency compared to classic approaches.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12610","citationCount":"0","resultStr":"{\"title\":\"Formulation and solution framework for real-time railway traffic management with demand prediction\",\"authors\":\"Bianca Pascariu,&nbsp;Johan Victor Flensburg,&nbsp;Paola Pellegrini,&nbsp;Carlos M. Lima Azevedo\",\"doi\":\"10.1049/itr2.12610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent transport policies increasingly promote shifts towards rail travel aiming at a more sustainable transportation system. This shift is hampered by widespread unexpected perturbations in operations, resulting in perceived poor punctuality and reliability. When prevention of such perturbations is not feasible, traffic management must mitigate their effects, resolving arising conflicts to restore regular train operations and minimize delay. Current practice generally includes the assessment of railway performance in terms of train delays, but the quality of service to passengers is rarely explicitly accounted for. A railway traffic management framework is proposed that accounts for both passenger and train delays. To do so, a predictive optimization framework is proposed, integrating a demand prediction module, a passenger demand assignment module and a traffic management module. The first dynamically predicts future origin-destination passenger flows using linear regression on real-time observed smart card data. Then, the demand assignment module links predicted passengers to specific train paths, given a railway schedule. Finally, the traffic management module optimizes train scheduling and routing in real time, under the combined objective of minimizing train and passenger delays. The methodology is validated and benchmarked against equivalent passenger agnostic traffic management on a case study of the Copenhagen suburban railway network. The results show that it is possible to take into account passenger perspective in railway traffic management, without reducing the railway system efficiency compared to classic approaches.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12610\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12610\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12610","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最近的交通政策越来越多地推动向铁路旅行的转变,旨在建立一个更可持续的交通系统。这种转变受到业务中广泛的意外干扰的阻碍,导致人们认为准点率和可靠性较差。当这种干扰无法预防时,交通管理部门必须减轻其影响,解决产生的冲突,以恢复正常的列车运行并最大限度地减少延误。目前的做法通常包括根据火车延误来评估铁路的表现,但对乘客的服务质量很少明确考虑。提出了一个考虑旅客和列车延误的铁路交通管理框架。为此,提出了一个需求预测优化框架,该框架集成了需求预测模块、乘客需求分配模块和交通管理模块。第一种方法是利用实时观察到的智能卡数据进行线性回归,动态预测未来的出发地客流。然后,需求分配模块将预测的乘客与给定的铁路时刻表连接到特定的火车路线。最后,交通管理模块在最小化列车和乘客延误的共同目标下,实时优化列车调度和路线。以哥本哈根郊区铁路网为例,对该方法进行了验证,并对等效乘客不可知交通管理进行了基准测试。结果表明,与经典方法相比,在不降低铁路系统效率的前提下,在铁路交通管理中考虑乘客视角是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Formulation and solution framework for real-time railway traffic management with demand prediction

Formulation and solution framework for real-time railway traffic management with demand prediction

Recent transport policies increasingly promote shifts towards rail travel aiming at a more sustainable transportation system. This shift is hampered by widespread unexpected perturbations in operations, resulting in perceived poor punctuality and reliability. When prevention of such perturbations is not feasible, traffic management must mitigate their effects, resolving arising conflicts to restore regular train operations and minimize delay. Current practice generally includes the assessment of railway performance in terms of train delays, but the quality of service to passengers is rarely explicitly accounted for. A railway traffic management framework is proposed that accounts for both passenger and train delays. To do so, a predictive optimization framework is proposed, integrating a demand prediction module, a passenger demand assignment module and a traffic management module. The first dynamically predicts future origin-destination passenger flows using linear regression on real-time observed smart card data. Then, the demand assignment module links predicted passengers to specific train paths, given a railway schedule. Finally, the traffic management module optimizes train scheduling and routing in real time, under the combined objective of minimizing train and passenger delays. The methodology is validated and benchmarked against equivalent passenger agnostic traffic management on a case study of the Copenhagen suburban railway network. The results show that it is possible to take into account passenger perspective in railway traffic management, without reducing the railway system efficiency compared to classic approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信