光谱数据局部回归模型建立的自动化

IF 2.1 4区 化学 Q1 SOCIAL WORK
Randy J. Pell, L. Scott Ramos, Brian Rohrback
{"title":"光谱数据局部回归模型建立的自动化","authors":"Randy J. Pell,&nbsp;L. Scott Ramos,&nbsp;Brian Rohrback","doi":"10.1002/cem.3637","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The concept of using local calibration for spectroscopic analysis has been discussed since the late 1980s. Since that time, many papers have described modifications to different aspects of the local modeling methodology. In this paper, we briefly discuss some of the modifications and describe an approach for the unattended automation of local model development. Ways to reduce calculation time are discussed. Four example spectroscopic datasets using Raman, FT-NIR, and dispersive NIR are analyzed, and the local model prediction performance is compared to standard PLS prediction performance. Using independent prediction sets, local modeling is shown to improve prediction performance by 17% to 55%.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automation of Local Regression Model Building for Spectroscopic Data\",\"authors\":\"Randy J. Pell,&nbsp;L. Scott Ramos,&nbsp;Brian Rohrback\",\"doi\":\"10.1002/cem.3637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The concept of using local calibration for spectroscopic analysis has been discussed since the late 1980s. Since that time, many papers have described modifications to different aspects of the local modeling methodology. In this paper, we briefly discuss some of the modifications and describe an approach for the unattended automation of local model development. Ways to reduce calculation time are discussed. Four example spectroscopic datasets using Raman, FT-NIR, and dispersive NIR are analyzed, and the local model prediction performance is compared to standard PLS prediction performance. Using independent prediction sets, local modeling is shown to improve prediction performance by 17% to 55%.</p>\\n </div>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3637\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3637","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

自20世纪80年代末以来,人们一直在讨论用局部校准进行光谱分析的概念。从那时起,许多论文描述了对局部建模方法的不同方面的修改。在本文中,我们简要地讨论了一些修改,并描述了一种无人值守的局部模型开发自动化方法。讨论了减少计算时间的方法。分析了拉曼光谱、傅里叶变换近红外光谱和色散近红外光谱的四个光谱数据集,并将局部模型预测性能与标准PLS预测性能进行了比较。使用独立的预测集,局部建模可以将预测性能提高17%到55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automation of Local Regression Model Building for Spectroscopic Data

The concept of using local calibration for spectroscopic analysis has been discussed since the late 1980s. Since that time, many papers have described modifications to different aspects of the local modeling methodology. In this paper, we briefly discuss some of the modifications and describe an approach for the unattended automation of local model development. Ways to reduce calculation time are discussed. Four example spectroscopic datasets using Raman, FT-NIR, and dispersive NIR are analyzed, and the local model prediction performance is compared to standard PLS prediction performance. Using independent prediction sets, local modeling is shown to improve prediction performance by 17% to 55%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信