预热空气温度对旋流燃烧室液氨闪蒸喷雾的影响

Droplet Pub Date : 2025-01-06 DOI:10.1002/dro2.159
Jiawen Liu, Meng Zhang, Zhenhua An, Jinhua Wang, Zuohua Huang
{"title":"预热空气温度对旋流燃烧室液氨闪蒸喷雾的影响","authors":"Jiawen Liu,&nbsp;Meng Zhang,&nbsp;Zhenhua An,&nbsp;Jinhua Wang,&nbsp;Zuohua Huang","doi":"10.1002/dro2.159","DOIUrl":null,"url":null,"abstract":"<p>Ammonia is a suitable carbon-free alternative fuel for power equipment. Direct combustion of liquid ammonia has the potential to reduce system costs and heat loss of gas turbine (GT). However, its tendency to flash and the high latent heat of vaporization can lead to combustion deterioration. Previous research suggests that stabilizing a liquid ammonia flame requires swirling and preheated air. So far, the influence mechanism of preheated air on liquid ammonia swirl spray remains inadequately explored. To fill this research gap, this study conducted a large eddy simulation (LES) to investigate the effect of preheated air temperature (<span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>a</mi>\n </msub>\n <annotation>${T}_{\\mathrm{a}}$</annotation>\n </semantics></math>) on a liquid ammonia flash spray in a swirl combustor. The influence of <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>a</mi>\n </msub>\n <annotation>${T}_{\\mathrm{a}}$</annotation>\n </semantics></math> on the spray morphology and the axial velocity, diameter, and temperature distributions of the droplets were investigated to understand the spray characteristics. Besides, the effects of <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>a</mi>\n </msub>\n <annotation>${T}_{\\mathrm{a}}$</annotation>\n </semantics></math> on the evaporation characteristics, the properties, and the possible ignition performance of the mixture were studied. The results show that with the increase of <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>a</mi>\n </msub>\n <annotation>${T}_{\\mathrm{a}}$</annotation>\n </semantics></math>, the heating capacity of air is enhanced, leading to a greater proportion of droplets reaching flash boiling conditions. This greatly optimizes the evaporation process, resulting in more complete evaporation and significantly smaller volume. The bulk air flow velocity is increased, causing the expansion of the inner recirculation zone (IRZ), and the gaseous temperature and mixture concentration distribution are optimized. In addition, the low gaseous ammonia concentration makes ignition difficulty at <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>a</mi>\n </msub>\n <annotation>${T}_{\\mathrm{a}}$</annotation>\n </semantics></math> = 300 K. The high <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>τ</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|\\tau |$</annotation>\n </semantics></math> value (<span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau $</annotation>\n </semantics></math> is the shear stress) and large inner recirculation zone area lead to a larger <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>e</mi>\n <mi>g</mi>\n <mi>i</mi>\n <mi>o</mi>\n <mi>n</mi>\n <mi>M</mi>\n </mrow>\n <annotation>$RegionM$</annotation>\n </semantics></math> and a smaller <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>e</mi>\n <mi>g</mi>\n <mi>i</mi>\n <mi>o</mi>\n <mi>n</mi>\n <mi>L</mi>\n </mrow>\n <annotation>$RegionL$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>a</mi>\n </msub>\n <annotation>${T}_{\\mathrm{a}}$</annotation>\n </semantics></math> = 300 K compared to the case of <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>a</mi>\n </msub>\n <annotation>${T}_{\\mathrm{a}}$</annotation>\n </semantics></math> = 500 K.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.159","citationCount":"0","resultStr":"{\"title\":\"Effect of preheated air temperature on a liquid ammonia flash spray in a swirl combustor\",\"authors\":\"Jiawen Liu,&nbsp;Meng Zhang,&nbsp;Zhenhua An,&nbsp;Jinhua Wang,&nbsp;Zuohua Huang\",\"doi\":\"10.1002/dro2.159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ammonia is a suitable carbon-free alternative fuel for power equipment. Direct combustion of liquid ammonia has the potential to reduce system costs and heat loss of gas turbine (GT). However, its tendency to flash and the high latent heat of vaporization can lead to combustion deterioration. Previous research suggests that stabilizing a liquid ammonia flame requires swirling and preheated air. So far, the influence mechanism of preheated air on liquid ammonia swirl spray remains inadequately explored. To fill this research gap, this study conducted a large eddy simulation (LES) to investigate the effect of preheated air temperature (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>a</mi>\\n </msub>\\n <annotation>${T}_{\\\\mathrm{a}}$</annotation>\\n </semantics></math>) on a liquid ammonia flash spray in a swirl combustor. The influence of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>a</mi>\\n </msub>\\n <annotation>${T}_{\\\\mathrm{a}}$</annotation>\\n </semantics></math> on the spray morphology and the axial velocity, diameter, and temperature distributions of the droplets were investigated to understand the spray characteristics. Besides, the effects of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>a</mi>\\n </msub>\\n <annotation>${T}_{\\\\mathrm{a}}$</annotation>\\n </semantics></math> on the evaporation characteristics, the properties, and the possible ignition performance of the mixture were studied. The results show that with the increase of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>a</mi>\\n </msub>\\n <annotation>${T}_{\\\\mathrm{a}}$</annotation>\\n </semantics></math>, the heating capacity of air is enhanced, leading to a greater proportion of droplets reaching flash boiling conditions. This greatly optimizes the evaporation process, resulting in more complete evaporation and significantly smaller volume. The bulk air flow velocity is increased, causing the expansion of the inner recirculation zone (IRZ), and the gaseous temperature and mixture concentration distribution are optimized. In addition, the low gaseous ammonia concentration makes ignition difficulty at <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>a</mi>\\n </msub>\\n <annotation>${T}_{\\\\mathrm{a}}$</annotation>\\n </semantics></math> = 300 K. The high <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>τ</mi>\\n <mo>|</mo>\\n </mrow>\\n <annotation>$|\\\\tau |$</annotation>\\n </semantics></math> value (<span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau $</annotation>\\n </semantics></math> is the shear stress) and large inner recirculation zone area lead to a larger <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mi>e</mi>\\n <mi>g</mi>\\n <mi>i</mi>\\n <mi>o</mi>\\n <mi>n</mi>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$RegionM$</annotation>\\n </semantics></math> and a smaller <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mi>e</mi>\\n <mi>g</mi>\\n <mi>i</mi>\\n <mi>o</mi>\\n <mi>n</mi>\\n <mi>L</mi>\\n </mrow>\\n <annotation>$RegionL$</annotation>\\n </semantics></math> at <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>a</mi>\\n </msub>\\n <annotation>${T}_{\\\\mathrm{a}}$</annotation>\\n </semantics></math> = 300 K compared to the case of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>a</mi>\\n </msub>\\n <annotation>${T}_{\\\\mathrm{a}}$</annotation>\\n </semantics></math> = 500 K.</p>\",\"PeriodicalId\":100381,\"journal\":{\"name\":\"Droplet\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.159\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Droplet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dro2.159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氨是一种适合于电力设备的无碳替代燃料。液氨直接燃烧具有降低燃气轮机系统成本和热损失的潜力。然而,它的闪蒸倾向和汽化潜热高会导致燃烧恶化。先前的研究表明,稳定液态氨火焰需要旋转和预热空气。到目前为止,对预热空气对液氨旋流喷雾的影响机理还没有充分的探讨。为了填补这一研究空白,本研究通过大涡模拟(LES)研究了预热空气温度(T a ${T}_{\ mathm {a}}$)对旋流燃烧室液氨闪蒸喷雾的影响。研究了T a ${T}_{\ maththrm {a}}$对喷雾形貌及液滴轴向速度、直径和温度分布的影响。此外,还研究了t_a ${T}_{\ math_m {a}}$对混合物的蒸发特性、性能和可能的着火性能的影响。结果表明:随着t_a ${T}_{\ mathm {a}}$的增大,空气的热容量增强,液滴达到闪沸状态的比例增大;这大大优化了蒸发过程,使蒸发更彻底,体积更小。提高了整体气流速度,扩大了内循环区,优化了气体温度和混合物浓度分布。此外,由于气氨浓度低,在T a ${T}_{\ maththrm {a}}$ = 300 K时点火困难。较高的| τ |$ |\tau |$值(τ $\tau $为剪应力)和较大的内循环带面积导致了较大的R - e - gM$ RegionM$和一个更小的Re $在T a ${T}_{\ mathm {a}}$ = 300 K与T ${T}_{\ maththrm {a}}$ = 500 K的情况相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of preheated air temperature on a liquid ammonia flash spray in a swirl combustor

Effect of preheated air temperature on a liquid ammonia flash spray in a swirl combustor

Ammonia is a suitable carbon-free alternative fuel for power equipment. Direct combustion of liquid ammonia has the potential to reduce system costs and heat loss of gas turbine (GT). However, its tendency to flash and the high latent heat of vaporization can lead to combustion deterioration. Previous research suggests that stabilizing a liquid ammonia flame requires swirling and preheated air. So far, the influence mechanism of preheated air on liquid ammonia swirl spray remains inadequately explored. To fill this research gap, this study conducted a large eddy simulation (LES) to investigate the effect of preheated air temperature ( T a ${T}_{\mathrm{a}}$ ) on a liquid ammonia flash spray in a swirl combustor. The influence of T a ${T}_{\mathrm{a}}$ on the spray morphology and the axial velocity, diameter, and temperature distributions of the droplets were investigated to understand the spray characteristics. Besides, the effects of T a ${T}_{\mathrm{a}}$ on the evaporation characteristics, the properties, and the possible ignition performance of the mixture were studied. The results show that with the increase of T a ${T}_{\mathrm{a}}$ , the heating capacity of air is enhanced, leading to a greater proportion of droplets reaching flash boiling conditions. This greatly optimizes the evaporation process, resulting in more complete evaporation and significantly smaller volume. The bulk air flow velocity is increased, causing the expansion of the inner recirculation zone (IRZ), and the gaseous temperature and mixture concentration distribution are optimized. In addition, the low gaseous ammonia concentration makes ignition difficulty at T a ${T}_{\mathrm{a}}$  = 300 K. The high | τ | $|\tau |$ value ( τ $\tau $ is the shear stress) and large inner recirculation zone area lead to a larger R e g i o n M $RegionM$ and a smaller R e g i o n L $RegionL$ at T a ${T}_{\mathrm{a}}$  = 300 K compared to the case of T a ${T}_{\mathrm{a}}$  = 500 K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信