陶瓷金属化辅助室温超声焊接增强Li/石榴石界面

Xuanyu Wang, Xiaole Yu, Xinxin Wang, Jingjing Chen, Dajian Wang, Chenlong Dong, Zhiyong Mao
{"title":"陶瓷金属化辅助室温超声焊接增强Li/石榴石界面","authors":"Xuanyu Wang,&nbsp;Xiaole Yu,&nbsp;Xinxin Wang,&nbsp;Jingjing Chen,&nbsp;Dajian Wang,&nbsp;Chenlong Dong,&nbsp;Zhiyong Mao","doi":"10.1002/cnl2.185","DOIUrl":null,"url":null,"abstract":"<p>Solid-state lithium metal batteries (SSLMBs), heralded as a promising next-generation energy storage technology, have garnered considerable attention owing to inherent high safety and potential for achieving high energy density. However, their practical deployment is hindered by the formidable interfacial challenges, primarily stemming from the poor wettability, (electro) chemical instability, and discontinuous charge/mass transport between solid-state electrolytes and Li metal. To overcome these obstacles, taking garnet-based electrolyte (Li<sub>6.5</sub>La<sub>3</sub>Zr<sub>1.5</sub>Ta<sub>0.5</sub>O<sub>12</sub>, LLZTO) as a pathfinder, the ceramic metallization-assisted room-temperature ultrasound werlding (UW) has been developed to reinforce the Li/LLZTO interface. This ultrasound welding approach constructs a compact interface that facilitates rapid Li<sup>+</sup>/e<sup>−</sup> transport, while the formation of Li−M (M = Au, Ag, and Sn) alloy homogenizes the distribution of Li<sup>+</sup>/e<sup>−</sup> at the interface. By optimization, the atomic-level contact achieved by ultrasound welding, coupled with a nanosized Au modification layer, significantly reduces the Li/LLZTO interfacial resistance to 5.4 Ω cm<sup>2</sup>, a marked decrease compared to the resistance achieved by static pressing methods (1727 Ω cm<sup>2</sup>). The symmetric cell exhibits a high critical current density of 1 mA cm<sup>−2</sup> and sustains long-term stability for over 1600 h at 0.3 mA cm<sup>−2</sup>, with a Li plating/stripping overpotential of &lt; 45 mV. By incorporating a robust anode-side interface into solid-state lithium metal batteries, the LiFePO<sub>4</sub>-based full battery contributes 118.4 mAh g⁻<sup>1</sup> after 600 cycles at 1 C (capacity: ∼100%). This study offers a facile and effective approach to bolster the interfacial stability between Li and solid-state electrolytes, paving the way for the development of high-performance solid-state lithium metal batteries.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.185","citationCount":"0","resultStr":"{\"title\":\"Reinforced Li/Garnet Interface by Ceramic Metallization-Assisted Room-Temperature Ultrasound Welding\",\"authors\":\"Xuanyu Wang,&nbsp;Xiaole Yu,&nbsp;Xinxin Wang,&nbsp;Jingjing Chen,&nbsp;Dajian Wang,&nbsp;Chenlong Dong,&nbsp;Zhiyong Mao\",\"doi\":\"10.1002/cnl2.185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid-state lithium metal batteries (SSLMBs), heralded as a promising next-generation energy storage technology, have garnered considerable attention owing to inherent high safety and potential for achieving high energy density. However, their practical deployment is hindered by the formidable interfacial challenges, primarily stemming from the poor wettability, (electro) chemical instability, and discontinuous charge/mass transport between solid-state electrolytes and Li metal. To overcome these obstacles, taking garnet-based electrolyte (Li<sub>6.5</sub>La<sub>3</sub>Zr<sub>1.5</sub>Ta<sub>0.5</sub>O<sub>12</sub>, LLZTO) as a pathfinder, the ceramic metallization-assisted room-temperature ultrasound werlding (UW) has been developed to reinforce the Li/LLZTO interface. This ultrasound welding approach constructs a compact interface that facilitates rapid Li<sup>+</sup>/e<sup>−</sup> transport, while the formation of Li−M (M = Au, Ag, and Sn) alloy homogenizes the distribution of Li<sup>+</sup>/e<sup>−</sup> at the interface. By optimization, the atomic-level contact achieved by ultrasound welding, coupled with a nanosized Au modification layer, significantly reduces the Li/LLZTO interfacial resistance to 5.4 Ω cm<sup>2</sup>, a marked decrease compared to the resistance achieved by static pressing methods (1727 Ω cm<sup>2</sup>). The symmetric cell exhibits a high critical current density of 1 mA cm<sup>−2</sup> and sustains long-term stability for over 1600 h at 0.3 mA cm<sup>−2</sup>, with a Li plating/stripping overpotential of &lt; 45 mV. By incorporating a robust anode-side interface into solid-state lithium metal batteries, the LiFePO<sub>4</sub>-based full battery contributes 118.4 mAh g⁻<sup>1</sup> after 600 cycles at 1 C (capacity: ∼100%). This study offers a facile and effective approach to bolster the interfacial stability between Li and solid-state electrolytes, paving the way for the development of high-performance solid-state lithium metal batteries.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固态锂金属电池(sslmb)因其固有的高安全性和实现高能量密度的潜力而受到广泛关注,被誉为下一代储能技术。然而,它们的实际部署受到强大的界面挑战的阻碍,主要源于较差的润湿性、(电)化学不稳定性以及固态电解质与锂金属之间的不连续电荷/质量传输。为了克服这些障碍,以石榴石基电解质(Li6.5La3Zr1.5Ta0.5O12, LLZTO)为探路者,开发了陶瓷金属化辅助室温超声焊接(UW)来增强Li/LLZTO界面。这种超声焊接方法构建了致密的界面,有利于Li+/e−的快速传递,而Li - M (M = Au, Ag和Sn)合金的形成使界面处Li+/e−的分布均匀化。通过优化,通过超声焊接实现的原子级接触,加上纳米级Au修饰层,显著降低了Li/LLZTO界面电阻至5.4 Ω cm2,与静态压制方法获得的电阻(1727 Ω cm2)相比有显著降低。对称电池具有1 mA cm - 2的高临界电流密度,并在0.3 mA cm - 2下保持超过1600小时的长期稳定性,锂电镀/剥离过电位为45 mV。通过将坚固的阳极侧界面整合到固态锂金属电池中,基于lifepo4的全电池在1c下循环600次(容量:~ 100%)后可提供118.4 mAh g - 1。该研究提供了一种简单有效的方法来增强Li和固态电解质之间的界面稳定性,为高性能固态锂金属电池的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reinforced Li/Garnet Interface by Ceramic Metallization-Assisted Room-Temperature Ultrasound Welding

Reinforced Li/Garnet Interface by Ceramic Metallization-Assisted Room-Temperature Ultrasound Welding

Solid-state lithium metal batteries (SSLMBs), heralded as a promising next-generation energy storage technology, have garnered considerable attention owing to inherent high safety and potential for achieving high energy density. However, their practical deployment is hindered by the formidable interfacial challenges, primarily stemming from the poor wettability, (electro) chemical instability, and discontinuous charge/mass transport between solid-state electrolytes and Li metal. To overcome these obstacles, taking garnet-based electrolyte (Li6.5La3Zr1.5Ta0.5O12, LLZTO) as a pathfinder, the ceramic metallization-assisted room-temperature ultrasound werlding (UW) has been developed to reinforce the Li/LLZTO interface. This ultrasound welding approach constructs a compact interface that facilitates rapid Li+/e transport, while the formation of Li−M (M = Au, Ag, and Sn) alloy homogenizes the distribution of Li+/e at the interface. By optimization, the atomic-level contact achieved by ultrasound welding, coupled with a nanosized Au modification layer, significantly reduces the Li/LLZTO interfacial resistance to 5.4 Ω cm2, a marked decrease compared to the resistance achieved by static pressing methods (1727 Ω cm2). The symmetric cell exhibits a high critical current density of 1 mA cm−2 and sustains long-term stability for over 1600 h at 0.3 mA cm−2, with a Li plating/stripping overpotential of < 45 mV. By incorporating a robust anode-side interface into solid-state lithium metal batteries, the LiFePO4-based full battery contributes 118.4 mAh g⁻1 after 600 cycles at 1 C (capacity: ∼100%). This study offers a facile and effective approach to bolster the interfacial stability between Li and solid-state electrolytes, paving the way for the development of high-performance solid-state lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信