瓢虫鞘翅偶联结构的防水机理及其仿生应用

Droplet Pub Date : 2025-01-05 DOI:10.1002/dro2.162
Jie Zhang, Hao Yang, Jiannan Cai, Junhao Shi, Yuquan Zheng, Hamed Rajabi, Jieliang Zhao, Jianing Wu
{"title":"瓢虫鞘翅偶联结构的防水机理及其仿生应用","authors":"Jie Zhang,&nbsp;Hao Yang,&nbsp;Jiannan Cai,&nbsp;Junhao Shi,&nbsp;Yuquan Zheng,&nbsp;Hamed Rajabi,&nbsp;Jieliang Zhao,&nbsp;Jianing Wu","doi":"10.1002/dro2.162","DOIUrl":null,"url":null,"abstract":"<p>Ladybirds (<i>Coccinella septempunctata</i>) are adept at living in humid conditions as their elytra can effectively shield their bodies from raindrops. However, due to technical difficulties in examining the delicate structure, the understanding of the water-proofing mechanism of the coupling structure and its impact on the dome-like elytra response to the raindrops remain elusive. In this combined experimental and theoretical study, we showed that the coupling structure on the ladybird elytra can ward off the raindrops traveling at a velocity of 6 m/s, which generates an impact force equivalent to 600 times the body weight. The waterproofing mechanism relies on the deformability of the elytra and their microstructures, which collectively impedes the formation of microchannels for liquids. The enhanced water-proofing capabilities enabled by the coupling structures are validated through experimental testing on comparative 3D-printed models, showing the effectiveness of these structures in improving water resistance. Subsequently, we showcased a water-proofing device, which substantially improved the efficiency of solar panels in converting solar energy. This multidisciplinary study not only advances our understanding of the biomechanics of coupling systems in insects but also inspires the design of water-proofing deployable structures.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.162","citationCount":"0","resultStr":"{\"title\":\"Water-proofing mechanism of coupling structures observed in ladybird elytra and its bionic application\",\"authors\":\"Jie Zhang,&nbsp;Hao Yang,&nbsp;Jiannan Cai,&nbsp;Junhao Shi,&nbsp;Yuquan Zheng,&nbsp;Hamed Rajabi,&nbsp;Jieliang Zhao,&nbsp;Jianing Wu\",\"doi\":\"10.1002/dro2.162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ladybirds (<i>Coccinella septempunctata</i>) are adept at living in humid conditions as their elytra can effectively shield their bodies from raindrops. However, due to technical difficulties in examining the delicate structure, the understanding of the water-proofing mechanism of the coupling structure and its impact on the dome-like elytra response to the raindrops remain elusive. In this combined experimental and theoretical study, we showed that the coupling structure on the ladybird elytra can ward off the raindrops traveling at a velocity of 6 m/s, which generates an impact force equivalent to 600 times the body weight. The waterproofing mechanism relies on the deformability of the elytra and their microstructures, which collectively impedes the formation of microchannels for liquids. The enhanced water-proofing capabilities enabled by the coupling structures are validated through experimental testing on comparative 3D-printed models, showing the effectiveness of these structures in improving water resistance. Subsequently, we showcased a water-proofing device, which substantially improved the efficiency of solar panels in converting solar energy. This multidisciplinary study not only advances our understanding of the biomechanics of coupling systems in insects but also inspires the design of water-proofing deployable structures.</p>\",\"PeriodicalId\":100381,\"journal\":{\"name\":\"Droplet\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.162\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Droplet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dro2.162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

七星瓢虫(Coccinella七星瓢虫)擅长在潮湿的环境中生活,因为它们的鞘翅可以有效地保护身体免受雨滴的伤害。然而,由于检测这种精致结构的技术困难,对耦合结构的防水机制及其对圆顶状鞘翅对雨滴响应的影响的理解仍然是难以捉摸的。在实验与理论相结合的研究中,我们发现瓢虫鞘翅上的耦合结构可以抵挡速度为6 m/s的雨滴,而雨滴的冲击力相当于其体重的600倍。防水机制依赖于鞘翅的可变形性及其微观结构,它们共同阻碍了液体微通道的形成。通过对比3d打印模型的实验测试,验证了耦合结构增强的防水能力,显示了这些结构在提高防水性能方面的有效性。随后,我们展示了一个防水装置,大大提高了太阳能电池板转换太阳能的效率。这项多学科研究不仅促进了我们对昆虫耦合系统生物力学的理解,而且还启发了防水可展开结构的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Water-proofing mechanism of coupling structures observed in ladybird elytra and its bionic application

Water-proofing mechanism of coupling structures observed in ladybird elytra and its bionic application

Ladybirds (Coccinella septempunctata) are adept at living in humid conditions as their elytra can effectively shield their bodies from raindrops. However, due to technical difficulties in examining the delicate structure, the understanding of the water-proofing mechanism of the coupling structure and its impact on the dome-like elytra response to the raindrops remain elusive. In this combined experimental and theoretical study, we showed that the coupling structure on the ladybird elytra can ward off the raindrops traveling at a velocity of 6 m/s, which generates an impact force equivalent to 600 times the body weight. The waterproofing mechanism relies on the deformability of the elytra and their microstructures, which collectively impedes the formation of microchannels for liquids. The enhanced water-proofing capabilities enabled by the coupling structures are validated through experimental testing on comparative 3D-printed models, showing the effectiveness of these structures in improving water resistance. Subsequently, we showcased a water-proofing device, which substantially improved the efficiency of solar panels in converting solar energy. This multidisciplinary study not only advances our understanding of the biomechanics of coupling systems in insects but also inspires the design of water-proofing deployable structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信