利用移位不变多元线性解锁GC × GC- tofms数据分析的新功能

IF 2.1 4区 化学 Q1 SOCIAL WORK
Paul-Albert Schneide, Michael Sorochan Armstrong, Neal Gallagher, Rasmus Bro
{"title":"利用移位不变多元线性解锁GC × GC- tofms数据分析的新功能","authors":"Paul-Albert Schneide,&nbsp;Michael Sorochan Armstrong,&nbsp;Neal Gallagher,&nbsp;Rasmus Bro","doi":"10.1002/cem.3623","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper introduces a novel deconvolution algorithm, shift-invariant multi-linearity (SIML), which significantly enhances the analysis of data from two-dimensional gas chromatography instruments coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). Designed to address the challenges posed by retention time shifts and high noise levels, SIML incorporates wavelet-based smoothing and Fourier-transform based shift-correction within the multivariate curve resolution-alternating least squares (MCR-ALS) framework. We benchmarked the SIML algorithm against non-negativity constrained MCR-ALS and parallel factor analysis 2 with flexible coupling (PARAFAC2 × N) using both simulated and real GC × GC-TOFMS datasets. Our results demonstrate that SIML provides unique solutions with significantly improved robustness, particularly in low signal-to-noise ratio scenarios, where it maintains high accuracy in estimating mass spectra and concentrations. The enhanced reliability of quantitative analyses afforded by SIML underscores its potential for broad application in complex matrix analyses across environmental science, food science, and biological research.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking New Capabilities in the Analysis of GC × GC-TOFMS Data With Shift-Invariant Multi-Linearity\",\"authors\":\"Paul-Albert Schneide,&nbsp;Michael Sorochan Armstrong,&nbsp;Neal Gallagher,&nbsp;Rasmus Bro\",\"doi\":\"10.1002/cem.3623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper introduces a novel deconvolution algorithm, shift-invariant multi-linearity (SIML), which significantly enhances the analysis of data from two-dimensional gas chromatography instruments coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). Designed to address the challenges posed by retention time shifts and high noise levels, SIML incorporates wavelet-based smoothing and Fourier-transform based shift-correction within the multivariate curve resolution-alternating least squares (MCR-ALS) framework. We benchmarked the SIML algorithm against non-negativity constrained MCR-ALS and parallel factor analysis 2 with flexible coupling (PARAFAC2 × N) using both simulated and real GC × GC-TOFMS datasets. Our results demonstrate that SIML provides unique solutions with significantly improved robustness, particularly in low signal-to-noise ratio scenarios, where it maintains high accuracy in estimating mass spectra and concentrations. The enhanced reliability of quantitative analyses afforded by SIML underscores its potential for broad application in complex matrix analyses across environmental science, food science, and biological research.</p>\\n </div>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3623\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3623","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的反卷积算法——平移不变多线性(SIML),该算法显著提高了对耦合于飞行时间质谱仪(GC × GC- tofms)的二维气相色谱仪数据的分析能力。为了解决保留时移和高噪声水平带来的挑战,SIML在多元曲线分辨率-交替最小二乘(MCR-ALS)框架内结合了基于小波的平滑和基于傅立叶变换的位移校正。我们使用模拟和真实的GC × GC- tofms数据集对SIML算法进行了非负性约束MCR-ALS和具有柔性耦合(PARAFAC2 × N)的并行因子分析2的基准测试。我们的研究结果表明,SIML提供了独特的解决方案,显著提高了鲁棒性,特别是在低信噪比的情况下,它在估计质谱和浓度方面保持了很高的准确性。SIML提供的定量分析的可靠性增强,强调了其在环境科学、食品科学和生物研究等复杂矩阵分析中的广泛应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking New Capabilities in the Analysis of GC × GC-TOFMS Data With Shift-Invariant Multi-Linearity

This paper introduces a novel deconvolution algorithm, shift-invariant multi-linearity (SIML), which significantly enhances the analysis of data from two-dimensional gas chromatography instruments coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). Designed to address the challenges posed by retention time shifts and high noise levels, SIML incorporates wavelet-based smoothing and Fourier-transform based shift-correction within the multivariate curve resolution-alternating least squares (MCR-ALS) framework. We benchmarked the SIML algorithm against non-negativity constrained MCR-ALS and parallel factor analysis 2 with flexible coupling (PARAFAC2 × N) using both simulated and real GC × GC-TOFMS datasets. Our results demonstrate that SIML provides unique solutions with significantly improved robustness, particularly in low signal-to-noise ratio scenarios, where it maintains high accuracy in estimating mass spectra and concentrations. The enhanced reliability of quantitative analyses afforded by SIML underscores its potential for broad application in complex matrix analyses across environmental science, food science, and biological research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信