Elvis A. Baidoo, Martha Verghese, Joshua L. Herring
{"title":"双螺杆挤出保留工业大麻副产品(大麻片)的功能","authors":"Elvis A. Baidoo, Martha Verghese, Joshua L. Herring","doi":"10.1111/1750-3841.17521","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>Consumer recognition of the health benefits of industrial hemp cannabidiol (CBD) products has increased its value to consumers. Consequently, there is a need to explore industrial hemp byproducts to improve sustainability and foster a circular economy. Extrusion processing was conducted with formulations made with <i>hemp flakes</i>, a byproduct of CBD oil extraction based on corn flour with 5%, 10%, and 15% hemp flakes replacement using a laboratory-scale conical twin-screw extruder. The impacts of formulation, barrel temperature, and screw speed on extrudates were evaluated. Cannabichromene (CBC), cannabinol (CBN), cannabidiolic acid (CBDA), cannabigerol (CBG), and CBD were determined with high-performance liquid chromatography before and postextrusion. Antioxidant potential (total polyphenol content [TPC] and 1,1-diphenyl-1-picrylhydrazyl radical scavenging assay [DPPH]) and ferric-reducing antioxidant potential (FRAP) were determined similarly. Increasing hemp flakes in the formula reduced pasting properties significantly (<i>p</i> ≤ 0.05). Expansion ratio (ER) showed significant linear effects with the amount of hemp flakes in the formula (<i>p</i> ≤ 0.05) and die temperature (<i>p</i> ≤ 0.05), while the 10% hemp formula recorded the highest ER of 3.24 (<i>p</i> ≤ 0.05). Extrusion generally reduced TPC, DPPH, FRAP, and cannabinoids compared to raw formulas. Low screw speeds and medium barrel temperatures displayed high retention of cannabinoids and antioxidants. Low screw speeds might have allowed adequate shearing, mixing, and an extended high-pressure exposure leading to the release of bound polyphenols, antioxidants, and cannabinoids. Some extrusion parameters can maintain cannabinoids and antioxidants in hemp byproducts while transforming them into puffed food products. These findings directly affect the industry, providing valuable insights for practical application.</p>\n </section>\n \n <section>\n \n <h3> Practical Application</h3>\n \n <p>Extrusion cooking remains one of the most economical methods of valorizing agricultural byproducts. This work developed extrusion parameters applicable to the food industry for making quality puffed food products. It could apply to snacks, breakfast cereals, animal feed, and others with desirable consumer properties and retained functionality for improving health and wellness.</p>\n </section>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twin-screw extrusion retains industrial hemp byproduct (hemp flakes) functionality\",\"authors\":\"Elvis A. Baidoo, Martha Verghese, Joshua L. Herring\",\"doi\":\"10.1111/1750-3841.17521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n \\n <p>Consumer recognition of the health benefits of industrial hemp cannabidiol (CBD) products has increased its value to consumers. Consequently, there is a need to explore industrial hemp byproducts to improve sustainability and foster a circular economy. Extrusion processing was conducted with formulations made with <i>hemp flakes</i>, a byproduct of CBD oil extraction based on corn flour with 5%, 10%, and 15% hemp flakes replacement using a laboratory-scale conical twin-screw extruder. The impacts of formulation, barrel temperature, and screw speed on extrudates were evaluated. Cannabichromene (CBC), cannabinol (CBN), cannabidiolic acid (CBDA), cannabigerol (CBG), and CBD were determined with high-performance liquid chromatography before and postextrusion. Antioxidant potential (total polyphenol content [TPC] and 1,1-diphenyl-1-picrylhydrazyl radical scavenging assay [DPPH]) and ferric-reducing antioxidant potential (FRAP) were determined similarly. Increasing hemp flakes in the formula reduced pasting properties significantly (<i>p</i> ≤ 0.05). Expansion ratio (ER) showed significant linear effects with the amount of hemp flakes in the formula (<i>p</i> ≤ 0.05) and die temperature (<i>p</i> ≤ 0.05), while the 10% hemp formula recorded the highest ER of 3.24 (<i>p</i> ≤ 0.05). Extrusion generally reduced TPC, DPPH, FRAP, and cannabinoids compared to raw formulas. Low screw speeds and medium barrel temperatures displayed high retention of cannabinoids and antioxidants. Low screw speeds might have allowed adequate shearing, mixing, and an extended high-pressure exposure leading to the release of bound polyphenols, antioxidants, and cannabinoids. Some extrusion parameters can maintain cannabinoids and antioxidants in hemp byproducts while transforming them into puffed food products. These findings directly affect the industry, providing valuable insights for practical application.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Practical Application</h3>\\n \\n <p>Extrusion cooking remains one of the most economical methods of valorizing agricultural byproducts. This work developed extrusion parameters applicable to the food industry for making quality puffed food products. It could apply to snacks, breakfast cereals, animal feed, and others with desirable consumer properties and retained functionality for improving health and wellness.</p>\\n </section>\\n </div>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 2\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17521\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17521","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Consumer recognition of the health benefits of industrial hemp cannabidiol (CBD) products has increased its value to consumers. Consequently, there is a need to explore industrial hemp byproducts to improve sustainability and foster a circular economy. Extrusion processing was conducted with formulations made with hemp flakes, a byproduct of CBD oil extraction based on corn flour with 5%, 10%, and 15% hemp flakes replacement using a laboratory-scale conical twin-screw extruder. The impacts of formulation, barrel temperature, and screw speed on extrudates were evaluated. Cannabichromene (CBC), cannabinol (CBN), cannabidiolic acid (CBDA), cannabigerol (CBG), and CBD were determined with high-performance liquid chromatography before and postextrusion. Antioxidant potential (total polyphenol content [TPC] and 1,1-diphenyl-1-picrylhydrazyl radical scavenging assay [DPPH]) and ferric-reducing antioxidant potential (FRAP) were determined similarly. Increasing hemp flakes in the formula reduced pasting properties significantly (p ≤ 0.05). Expansion ratio (ER) showed significant linear effects with the amount of hemp flakes in the formula (p ≤ 0.05) and die temperature (p ≤ 0.05), while the 10% hemp formula recorded the highest ER of 3.24 (p ≤ 0.05). Extrusion generally reduced TPC, DPPH, FRAP, and cannabinoids compared to raw formulas. Low screw speeds and medium barrel temperatures displayed high retention of cannabinoids and antioxidants. Low screw speeds might have allowed adequate shearing, mixing, and an extended high-pressure exposure leading to the release of bound polyphenols, antioxidants, and cannabinoids. Some extrusion parameters can maintain cannabinoids and antioxidants in hemp byproducts while transforming them into puffed food products. These findings directly affect the industry, providing valuable insights for practical application.
Practical Application
Extrusion cooking remains one of the most economical methods of valorizing agricultural byproducts. This work developed extrusion parameters applicable to the food industry for making quality puffed food products. It could apply to snacks, breakfast cereals, animal feed, and others with desirable consumer properties and retained functionality for improving health and wellness.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.