液泡Sts1降解诱导的细胞质蛋白酶体易位恢复细胞增殖

IF 1.3 4区 生物学 Q4 CELL BIOLOGY
Genes to Cells Pub Date : 2025-02-04 DOI:10.1111/gtc.70004
Noritaka Ohigashi, Shoshiro Hirayama, Hideki Yashiroda, Shigeo Murata
{"title":"液泡Sts1降解诱导的细胞质蛋白酶体易位恢复细胞增殖","authors":"Noritaka Ohigashi,&nbsp;Shoshiro Hirayama,&nbsp;Hideki Yashiroda,&nbsp;Shigeo Murata","doi":"10.1111/gtc.70004","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The proteasome is a large multicatalytic complex conserved across eukaryotes that regulates multiple cellular processes through the degradation of ubiquitinated proteins. The proteasome is predominantly localized to the nucleus in proliferating cells and translocates to the cytoplasm in the stationary phase. Sts1 reportedly plays a vital role in the nuclear import of the proteasome during proliferation in yeast <i>Saccharomyces cerevisiae</i>. However, the mechanisms underlying cytoplasmic translocation of the proteasome in the stationary phase remain unknown. Here, we showed that the ubiquitin ligase Hul5 promotes vacuolar sequestration of Sts1 in a catalytic activity-dependent manner and thus suppresses the nuclear import of the proteasome during the stationary phase. We further demonstrated that cytoplasmic translocation of the proteasome plays a vital role in the clearance of ubiquitinated protein aggregates, mitochondrial quality control, and resuming proliferation from cellular quiescence. Our results provide insights into the mechanisms and significance of the cytoplasmic localization of proteasomes in cellular quiescence.</p>\n </div>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"30 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vacuolar Sts1 Degradation-Induced Cytoplasmic Proteasome Translocation Restores Cell Proliferation\",\"authors\":\"Noritaka Ohigashi,&nbsp;Shoshiro Hirayama,&nbsp;Hideki Yashiroda,&nbsp;Shigeo Murata\",\"doi\":\"10.1111/gtc.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The proteasome is a large multicatalytic complex conserved across eukaryotes that regulates multiple cellular processes through the degradation of ubiquitinated proteins. The proteasome is predominantly localized to the nucleus in proliferating cells and translocates to the cytoplasm in the stationary phase. Sts1 reportedly plays a vital role in the nuclear import of the proteasome during proliferation in yeast <i>Saccharomyces cerevisiae</i>. However, the mechanisms underlying cytoplasmic translocation of the proteasome in the stationary phase remain unknown. Here, we showed that the ubiquitin ligase Hul5 promotes vacuolar sequestration of Sts1 in a catalytic activity-dependent manner and thus suppresses the nuclear import of the proteasome during the stationary phase. We further demonstrated that cytoplasmic translocation of the proteasome plays a vital role in the clearance of ubiquitinated protein aggregates, mitochondrial quality control, and resuming proliferation from cellular quiescence. Our results provide insights into the mechanisms and significance of the cytoplasmic localization of proteasomes in cellular quiescence.</p>\\n </div>\",\"PeriodicalId\":12742,\"journal\":{\"name\":\"Genes to Cells\",\"volume\":\"30 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes to Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.70004\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.70004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白酶体是一种大型的多催化复合物,在真核生物中保守,通过降解泛素化蛋白来调节多种细胞过程。在增殖细胞中蛋白酶体主要定位于细胞核,在静止期转移到细胞质中。据报道,Sts1在酵母(Saccharomyces cerevisiae)增殖过程中对蛋白酶体的核输入起着至关重要的作用。然而,蛋白酶体在固定期细胞质易位的机制尚不清楚。在这里,我们发现泛素连接酶Hul5以催化活性依赖的方式促进Sts1的空泡隔离,从而在固定阶段抑制蛋白酶体的核输入。我们进一步证明,蛋白酶体的细胞质易位在清除泛素化蛋白聚集体、线粒体质量控制和从细胞静止中恢复增殖中起着至关重要的作用。我们的研究结果揭示了蛋白酶体在细胞静止过程中胞质定位的机制和意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vacuolar Sts1 Degradation-Induced Cytoplasmic Proteasome Translocation Restores Cell Proliferation

The proteasome is a large multicatalytic complex conserved across eukaryotes that regulates multiple cellular processes through the degradation of ubiquitinated proteins. The proteasome is predominantly localized to the nucleus in proliferating cells and translocates to the cytoplasm in the stationary phase. Sts1 reportedly plays a vital role in the nuclear import of the proteasome during proliferation in yeast Saccharomyces cerevisiae. However, the mechanisms underlying cytoplasmic translocation of the proteasome in the stationary phase remain unknown. Here, we showed that the ubiquitin ligase Hul5 promotes vacuolar sequestration of Sts1 in a catalytic activity-dependent manner and thus suppresses the nuclear import of the proteasome during the stationary phase. We further demonstrated that cytoplasmic translocation of the proteasome plays a vital role in the clearance of ubiquitinated protein aggregates, mitochondrial quality control, and resuming proliferation from cellular quiescence. Our results provide insights into the mechanisms and significance of the cytoplasmic localization of proteasomes in cellular quiescence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes to Cells
Genes to Cells 生物-细胞生物学
CiteScore
3.40
自引率
0.00%
发文量
71
审稿时长
3 months
期刊介绍: Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信