Caterina Morelli, Simone Boccaletti, Paolo Maranzano, Philipp Otto
{"title":"多维时空聚类——在欧洲环境可持续性评分中的应用","authors":"Caterina Morelli, Simone Boccaletti, Paolo Maranzano, Philipp Otto","doi":"10.1002/env.2893","DOIUrl":null,"url":null,"abstract":"<p>The assessment of corporate sustainability performance is extremely relevant in facilitating the transition to a green and low-carbon intensity economy. However, companies located in different areas may be subject to different sustainability and environmental risks and policies. Henceforth, the main objective of this paper is to investigate the spatial and temporal pattern of the sustainability evaluations of European firms. We leverage a large dataset containing information about companies' sustainability performances, measured by MSCI ESG ratings, and geographical coordinates of firms in Western Europe between 2013 and 2023. By means of a modified version of the Chavent et al. (2018) hierarchical algorithm, we conduct a spatial clustering analysis, combining sustainability and spatial information, and a spatiotemporal clustering analysis, which combines the time dynamics of multiple sustainability features and spatial dissimilarities, to detect groups of firms with homogeneous sustainability performance. We are able to build cross-national and cross-industry clusters with remarkable differences in terms of sustainability scores. Among other results, in the spatio-temporal analysis, we observe a high degree of geographical overlap among clusters, indicating that the temporal dynamics in sustainability assessment are relevant within a multidimensional approach. Our findings help to capture the diversity of ESG ratings across Western Europe and may assist practitioners and policymakers in evaluating companies facing different sustainability-linked risks in different areas.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2893","citationCount":"0","resultStr":"{\"title\":\"Multidimensional Spatiotemporal Clustering – An Application to Environmental Sustainability Scores in Europe\",\"authors\":\"Caterina Morelli, Simone Boccaletti, Paolo Maranzano, Philipp Otto\",\"doi\":\"10.1002/env.2893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The assessment of corporate sustainability performance is extremely relevant in facilitating the transition to a green and low-carbon intensity economy. However, companies located in different areas may be subject to different sustainability and environmental risks and policies. Henceforth, the main objective of this paper is to investigate the spatial and temporal pattern of the sustainability evaluations of European firms. We leverage a large dataset containing information about companies' sustainability performances, measured by MSCI ESG ratings, and geographical coordinates of firms in Western Europe between 2013 and 2023. By means of a modified version of the Chavent et al. (2018) hierarchical algorithm, we conduct a spatial clustering analysis, combining sustainability and spatial information, and a spatiotemporal clustering analysis, which combines the time dynamics of multiple sustainability features and spatial dissimilarities, to detect groups of firms with homogeneous sustainability performance. We are able to build cross-national and cross-industry clusters with remarkable differences in terms of sustainability scores. Among other results, in the spatio-temporal analysis, we observe a high degree of geographical overlap among clusters, indicating that the temporal dynamics in sustainability assessment are relevant within a multidimensional approach. Our findings help to capture the diversity of ESG ratings across Western Europe and may assist practitioners and policymakers in evaluating companies facing different sustainability-linked risks in different areas.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2893\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2893\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2893","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
对企业可持续发展绩效的评估对于促进向绿色低碳强度经济的转型至关重要。然而,位于不同地区的公司可能面临不同的可持续性和环境风险和政策。因此,本文的主要目的是研究欧洲企业可持续发展评价的时空格局。我们利用了一个大型数据集,其中包含有关公司可持续发展绩效的信息,该信息由MSCI ESG评级衡量,以及2013年至2023年西欧公司的地理坐标。本文采用改进的Chavent et al.(2018)分层算法,结合可持续性和空间信息进行空间聚类分析,并结合多种可持续性特征的时间动态和空间差异性进行时空聚类分析,以检测具有同质可持续性绩效的企业群体。我们能够建立跨国和跨行业的集群,在可持续性得分上存在显著差异。此外,在时空分析中,我们观察到集群之间存在高度的地理重叠,表明可持续性评估中的时间动态在多维方法中是相关的。我们的研究结果有助于了解整个西欧地区ESG评级的多样性,并可能有助于从业者和政策制定者评估不同地区面临不同可持续性相关风险的公司。
Multidimensional Spatiotemporal Clustering – An Application to Environmental Sustainability Scores in Europe
The assessment of corporate sustainability performance is extremely relevant in facilitating the transition to a green and low-carbon intensity economy. However, companies located in different areas may be subject to different sustainability and environmental risks and policies. Henceforth, the main objective of this paper is to investigate the spatial and temporal pattern of the sustainability evaluations of European firms. We leverage a large dataset containing information about companies' sustainability performances, measured by MSCI ESG ratings, and geographical coordinates of firms in Western Europe between 2013 and 2023. By means of a modified version of the Chavent et al. (2018) hierarchical algorithm, we conduct a spatial clustering analysis, combining sustainability and spatial information, and a spatiotemporal clustering analysis, which combines the time dynamics of multiple sustainability features and spatial dissimilarities, to detect groups of firms with homogeneous sustainability performance. We are able to build cross-national and cross-industry clusters with remarkable differences in terms of sustainability scores. Among other results, in the spatio-temporal analysis, we observe a high degree of geographical overlap among clusters, indicating that the temporal dynamics in sustainability assessment are relevant within a multidimensional approach. Our findings help to capture the diversity of ESG ratings across Western Europe and may assist practitioners and policymakers in evaluating companies facing different sustainability-linked risks in different areas.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.