碳价格预测的多频数据融合深度学习模型

IF 3.4 3区 经济学 Q1 ECONOMICS
Canran Xiao, Yongmei Liu
{"title":"碳价格预测的多频数据融合深度学习模型","authors":"Canran Xiao,&nbsp;Yongmei Liu","doi":"10.1002/for.3198","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In response to the global need for effective management of carbon emissions and alignment with sustainable development goals, predicting carbon trading prices accurately is critical. This study introduces a multifrequency data fusion carbon price prediction model (MFF-CPPM), addressing the nonlinear characteristics of carbon trading prices and inconsistent feature factor frequencies. The MFF-CPPM consists of a feature-extraction frontend, a multifrequency data fusion transformer, and a fusion regression layer, offering a novel methodological approach in forecasting studies. The model's validity was tested in Guangdong, China's largest carbon trading pilot market. The results demonstrated that the MFF-CPPM outperformed baseline models in terms of carbon price-prediction accuracy and trend forecasting. Additional trials conducted in Hubei and Beijing confirmed the model's robustness and generalization capabilities, providing valuable evidence of its effectiveness and reliability across varying market contexts. This study presents a novel predictive model for carbon trading prices, with a unique capability to harness data at differing frequencies. The MFF-CPPM not only enhances forecasting accuracy but also offers an innovative approach to effectively incorporate multifrequency information. This advancement paves the way for flexible forecasting models in any scenario where data arrive at differing frequencies.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 2","pages":"436-458"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multifrequency Data Fusion Deep Learning Model for Carbon Price Prediction\",\"authors\":\"Canran Xiao,&nbsp;Yongmei Liu\",\"doi\":\"10.1002/for.3198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In response to the global need for effective management of carbon emissions and alignment with sustainable development goals, predicting carbon trading prices accurately is critical. This study introduces a multifrequency data fusion carbon price prediction model (MFF-CPPM), addressing the nonlinear characteristics of carbon trading prices and inconsistent feature factor frequencies. The MFF-CPPM consists of a feature-extraction frontend, a multifrequency data fusion transformer, and a fusion regression layer, offering a novel methodological approach in forecasting studies. The model's validity was tested in Guangdong, China's largest carbon trading pilot market. The results demonstrated that the MFF-CPPM outperformed baseline models in terms of carbon price-prediction accuracy and trend forecasting. Additional trials conducted in Hubei and Beijing confirmed the model's robustness and generalization capabilities, providing valuable evidence of its effectiveness and reliability across varying market contexts. This study presents a novel predictive model for carbon trading prices, with a unique capability to harness data at differing frequencies. The MFF-CPPM not only enhances forecasting accuracy but also offers an innovative approach to effectively incorporate multifrequency information. This advancement paves the way for flexible forecasting models in any scenario where data arrive at differing frequencies.</p>\\n </div>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":\"44 2\",\"pages\":\"436-458\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3198\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3198","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

为了响应有效管理碳排放和与可持续发展目标保持一致的全球需求,准确预测碳交易价格至关重要。针对碳交易价格的非线性和特征因子频率不一致的特点,提出了一种多频数据融合碳价格预测模型(MFF-CPPM)。MFF-CPPM由特征提取前端、多频数据融合变压器和融合回归层组成,为预测研究提供了一种新的方法方法。该模型的有效性在中国最大的碳交易试点市场广东得到了检验。结果表明,MFF-CPPM模型在碳价格预测精度和趋势预测方面均优于基线模型。在湖北和北京进行的额外试验证实了该模型的稳健性和泛化能力,为其在不同市场背景下的有效性和可靠性提供了有价值的证据。本研究提出了一种新的碳交易价格预测模型,具有独特的利用不同频率数据的能力。MFF-CPPM不仅提高了预测精度,而且提供了一种有效融合多频信息的创新方法。这一进步为在数据到达不同频率的任何情况下灵活的预测模型铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multifrequency Data Fusion Deep Learning Model for Carbon Price Prediction

In response to the global need for effective management of carbon emissions and alignment with sustainable development goals, predicting carbon trading prices accurately is critical. This study introduces a multifrequency data fusion carbon price prediction model (MFF-CPPM), addressing the nonlinear characteristics of carbon trading prices and inconsistent feature factor frequencies. The MFF-CPPM consists of a feature-extraction frontend, a multifrequency data fusion transformer, and a fusion regression layer, offering a novel methodological approach in forecasting studies. The model's validity was tested in Guangdong, China's largest carbon trading pilot market. The results demonstrated that the MFF-CPPM outperformed baseline models in terms of carbon price-prediction accuracy and trend forecasting. Additional trials conducted in Hubei and Beijing confirmed the model's robustness and generalization capabilities, providing valuable evidence of its effectiveness and reliability across varying market contexts. This study presents a novel predictive model for carbon trading prices, with a unique capability to harness data at differing frequencies. The MFF-CPPM not only enhances forecasting accuracy but also offers an innovative approach to effectively incorporate multifrequency information. This advancement paves the way for flexible forecasting models in any scenario where data arrive at differing frequencies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信