用横断面聚集法预测预期不足和风险价值

IF 3.4 3区 经济学 Q1 ECONOMICS
Jie Wang, Yongqiao Wang
{"title":"用横断面聚集法预测预期不足和风险价值","authors":"Jie Wang,&nbsp;Yongqiao Wang","doi":"10.1002/for.3195","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The combination of the conditional autoregressive value-at-risk (CAViaR) process with the Fissler–Ziegel (FZ) loss function generates a recently emerging framework (CAViaR-FZ) for forecasting value-at-risk (VaR) and expected shortfall (ES). However, existing CAViaR-FZ models typically overlook the presence of long-range dependence, a stylized fact of financial time series. This paper proposes a long-memory CAViaR-FZ model using the cross-sectional aggregation (CSA) method. The CSA method is well-recognized for its ability to generate a long-memory process by aggregating an infinite number of short-memory processes cross-sectionally. The proposed CSA-CAViaR-FZ model flexibly captures long-memory dynamics in both VaR and ES and includes the original short-memory CAViaR-FZ model as a special case. Simulation and empirical results demonstrate that the proposed model outperforms various competing models.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 2","pages":"391-423"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Expected Shortfall and Value-at-Risk With Cross-Sectional Aggregation\",\"authors\":\"Jie Wang,&nbsp;Yongqiao Wang\",\"doi\":\"10.1002/for.3195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The combination of the conditional autoregressive value-at-risk (CAViaR) process with the Fissler–Ziegel (FZ) loss function generates a recently emerging framework (CAViaR-FZ) for forecasting value-at-risk (VaR) and expected shortfall (ES). However, existing CAViaR-FZ models typically overlook the presence of long-range dependence, a stylized fact of financial time series. This paper proposes a long-memory CAViaR-FZ model using the cross-sectional aggregation (CSA) method. The CSA method is well-recognized for its ability to generate a long-memory process by aggregating an infinite number of short-memory processes cross-sectionally. The proposed CSA-CAViaR-FZ model flexibly captures long-memory dynamics in both VaR and ES and includes the original short-memory CAViaR-FZ model as a special case. Simulation and empirical results demonstrate that the proposed model outperforms various competing models.</p>\\n </div>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":\"44 2\",\"pages\":\"391-423\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3195\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3195","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

条件自回归风险价值(CAViaR)过程与Fissler-Ziegel (FZ)损失函数的结合产生了一个最近出现的用于预测风险价值(VaR)和预期缺口(ES)的框架(CAViaR-FZ)。然而,现有的CAViaR-FZ模型通常忽略了长期依赖性的存在,这是金融时间序列的一个程式化事实。本文提出了一种基于截面聚集(CSA)的长记忆CAViaR-FZ模型。CSA方法因其通过横截面聚合无限数量的短记忆过程来生成长记忆过程的能力而得到广泛认可。提出的CSA-CAViaR-FZ模型灵活地捕捉VaR和ES的长记忆动态,并将原有的短记忆CAViaR-FZ模型作为特例。仿真和实证结果表明,该模型优于各种竞争模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Expected Shortfall and Value-at-Risk With Cross-Sectional Aggregation

The combination of the conditional autoregressive value-at-risk (CAViaR) process with the Fissler–Ziegel (FZ) loss function generates a recently emerging framework (CAViaR-FZ) for forecasting value-at-risk (VaR) and expected shortfall (ES). However, existing CAViaR-FZ models typically overlook the presence of long-range dependence, a stylized fact of financial time series. This paper proposes a long-memory CAViaR-FZ model using the cross-sectional aggregation (CSA) method. The CSA method is well-recognized for its ability to generate a long-memory process by aggregating an infinite number of short-memory processes cross-sectionally. The proposed CSA-CAViaR-FZ model flexibly captures long-memory dynamics in both VaR and ES and includes the original short-memory CAViaR-FZ model as a special case. Simulation and empirical results demonstrate that the proposed model outperforms various competing models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信