下载PDF
{"title":"修正“金刚石纳米线的超维纳指数”","authors":"","doi":"10.1002/qua.27514","DOIUrl":null,"url":null,"abstract":"<p>\n <span>B. Nagy</span>, “ <span>The Hyper-Wiener Index of Diamond Nanowires</span>,” <i>International Journal of Quantum Chemistry</i> <span>124</span>, no. <span>1</span> (<span>2024</span>): e27258.</p><p>There is a miscalculation in the above paper; the correct formula and value of hyper-Wiener indices are presented here. The numbering is from the original article; the correct versions of the equations with the corrected proof can be found below.</p><p>Now we state our main results.</p><p>\n </p><p>\n </p><p>\n </p><p>Some of the first elements of the sequence defined above give the hyper-Wiener index of relatively small diamond grid samples, that is, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>460</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_1\\right)=460 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>3556</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_2\\right)=3556 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>14</mn>\n <mspace></mspace>\n <mn>306</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_3\\right)=14\\kern0.2em 306 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>40</mn>\n <mspace></mspace>\n <mn>432</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_4\\right)=40\\kern.2em 432 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>92</mn>\n <mspace></mspace>\n <mn>360</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_5\\right)=92\\kern.2em 360 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>183</mn>\n <mspace></mspace>\n <mn>220</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_6\\right)=183\\kern.2em 220 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>7</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>328</mn>\n <mspace></mspace>\n <mn>846</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_7\\right)=328\\kern.2em 846 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>8</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>547</mn>\n <mspace></mspace>\n <mn>776</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_8\\right)=547\\kern.2em 776 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mi>G</mi>\n <mn>9</mn>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>861</mn>\n <mspace></mspace>\n <mn>252</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_9\\right)=861\\kern0.2em 252 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>10</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>1</mn>\n <mspace></mspace>\n <mn>293</mn>\n <mspace></mspace>\n <mn>220</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_{10}\\right)=1\\kern.2em 293\\kern.2em 220 $$</annotation>\n </semantics></math> for the graphs representing 1 to 10 unit cells next to each other in the diamond grid.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27514","citationCount":"0","resultStr":"{\"title\":\"Correction to “The hyper-Wiener index of diamond nanowires”\",\"authors\":\"\",\"doi\":\"10.1002/qua.27514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\n <span>B. Nagy</span>, “ <span>The Hyper-Wiener Index of Diamond Nanowires</span>,” <i>International Journal of Quantum Chemistry</i> <span>124</span>, no. <span>1</span> (<span>2024</span>): e27258.</p><p>There is a miscalculation in the above paper; the correct formula and value of hyper-Wiener indices are presented here. The numbering is from the original article; the correct versions of the equations with the corrected proof can be found below.</p><p>Now we state our main results.</p><p>\\n </p><p>\\n </p><p>\\n </p><p>Some of the first elements of the sequence defined above give the hyper-Wiener index of relatively small diamond grid samples, that is, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mi>W</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>460</mn>\\n </mrow>\\n <annotation>$$ WW\\\\left({G}_1\\\\right)=460 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mi>W</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>3556</mn>\\n </mrow>\\n <annotation>$$ WW\\\\left({G}_2\\\\right)=3556 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mi>W</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>14</mn>\\n <mspace></mspace>\\n <mn>306</mn>\\n </mrow>\\n <annotation>$$ WW\\\\left({G}_3\\\\right)=14\\\\kern0.2em 306 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mi>W</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>40</mn>\\n <mspace></mspace>\\n <mn>432</mn>\\n </mrow>\\n <annotation>$$ WW\\\\left({G}_4\\\\right)=40\\\\kern.2em 432 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mi>W</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>5</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>92</mn>\\n <mspace></mspace>\\n <mn>360</mn>\\n </mrow>\\n <annotation>$$ WW\\\\left({G}_5\\\\right)=92\\\\kern.2em 360 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mi>W</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>183</mn>\\n <mspace></mspace>\\n <mn>220</mn>\\n </mrow>\\n <annotation>$$ WW\\\\left({G}_6\\\\right)=183\\\\kern.2em 220 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mi>W</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>7</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>328</mn>\\n <mspace></mspace>\\n <mn>846</mn>\\n </mrow>\\n <annotation>$$ WW\\\\left({G}_7\\\\right)=328\\\\kern.2em 846 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mi>W</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>8</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>547</mn>\\n <mspace></mspace>\\n <mn>776</mn>\\n </mrow>\\n <annotation>$$ WW\\\\left({G}_8\\\\right)=547\\\\kern.2em 776 $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mi>W</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>G</mi>\\n <mn>9</mn>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>861</mn>\\n <mspace></mspace>\\n <mn>252</mn>\\n </mrow>\\n <annotation>$$ WW\\\\left({G}_9\\\\right)=861\\\\kern0.2em 252 $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>W</mi>\\n <mi>W</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>10</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mspace></mspace>\\n <mn>293</mn>\\n <mspace></mspace>\\n <mn>220</mn>\\n </mrow>\\n <annotation>$$ WW\\\\left({G}_{10}\\\\right)=1\\\\kern.2em 293\\\\kern.2em 220 $$</annotation>\\n </semantics></math> for the graphs representing 1 to 10 unit cells next to each other in the diamond grid.</p>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"125 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27514\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27514\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27514","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Correction to “The hyper-Wiener index of diamond nanowires”
B. Nagy , “ The Hyper-Wiener Index of Diamond Nanowires ,” International Journal of Quantum Chemistry 124 , no. 1 (2024 ): e27258.
There is a miscalculation in the above paper; the correct formula and value of hyper-Wiener indices are presented here. The numbering is from the original article; the correct versions of the equations with the corrected proof can be found below.
Now we state our main results.
Some of the first elements of the sequence defined above give the hyper-Wiener index of relatively small diamond grid samples, that is,
W
W
(
G
1
)
=
460
$$ WW\left({G}_1\right)=460 $$
,
W
W
(
G
2
)
=
3556
$$ WW\left({G}_2\right)=3556 $$
,
W
W
(
G
3
)
=
14
306
$$ WW\left({G}_3\right)=14\kern0.2em 306 $$
,
W
W
(
G
4
)
=
40
432
$$ WW\left({G}_4\right)=40\kern.2em 432 $$
,
W
W
(
G
5
)
=
92
360
$$ WW\left({G}_5\right)=92\kern.2em 360 $$
,
W
W
(
G
6
)
=
183
220
$$ WW\left({G}_6\right)=183\kern.2em 220 $$
,
W
W
(
G
7
)
=
328
846
$$ WW\left({G}_7\right)=328\kern.2em 846 $$
,
W
W
(
G
8
)
=
547
776
$$ WW\left({G}_8\right)=547\kern.2em 776 $$
,
W
W
(
G
9
)
=
861
252
$$ WW\left({G}_9\right)=861\kern0.2em 252 $$
and
W
W
(
G
10
)
=
1
293
220
$$ WW\left({G}_{10}\right)=1\kern.2em 293\kern.2em 220 $$
for the graphs representing 1 to 10 unit cells next to each other in the diamond grid.