假设:草甘膦除草剂可通过延长在骨骼中的持久性增加造血恶性肿瘤的风险

IF 6 3区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Charles M. Benbrook
{"title":"假设:草甘膦除草剂可通过延长在骨骼中的持久性增加造血恶性肿瘤的风险","authors":"Charles M. Benbrook","doi":"10.1186/s12302-025-01057-1","DOIUrl":null,"url":null,"abstract":"<div><p>Despite episodic and variable patterns of exposure, the levels of glyphosate (GLY) detected in the urine of herbicide applicators and the general public are relatively stable across space (urban vs. rural) and time (weed spray season, not spray season). Substantial GLY metabolism data show that within minutes of entering the bloodstream, GLY moves into bone marrow, and then laterally through bone tissue and back into general circulation. As GLY moves through bone it comes into contact with calcium and a portion is immobilized via chelation. A novel two-part hypothesis is explored: first, the likely reason for the lack of variability in GLY levels in urine is that GLY stored in bone is excreted gradually over days to weeks, and augments the generally stable and modest levels of dietary exposure to GLY; and second, the prolonged systemic movement of GLY into bone marrow and bone extends contact between GLY and hematopoietic stem cells (HSC), increasing the risk of GLY-induced breaks and rearrangements in the DNA in HSCs. Studies confirm that GLY and glyphosate-based herbicides (GBHs) can trigger oxidative stress and impair DNA-repair mechanisms. Animal bioassays and epidemiology studies link GLY/GBH exposures to heightened risk of blood cancers, and possibly other pathologies. The hypothesis proposed here provides a plausible pathophysiologic basis for these observations relative, in particular, to blood cancers.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"37 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-025-01057-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Hypothesis: glyphosate-based herbicides can increase risk of hematopoietic malignancies through extended persistence in bone\",\"authors\":\"Charles M. Benbrook\",\"doi\":\"10.1186/s12302-025-01057-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite episodic and variable patterns of exposure, the levels of glyphosate (GLY) detected in the urine of herbicide applicators and the general public are relatively stable across space (urban vs. rural) and time (weed spray season, not spray season). Substantial GLY metabolism data show that within minutes of entering the bloodstream, GLY moves into bone marrow, and then laterally through bone tissue and back into general circulation. As GLY moves through bone it comes into contact with calcium and a portion is immobilized via chelation. A novel two-part hypothesis is explored: first, the likely reason for the lack of variability in GLY levels in urine is that GLY stored in bone is excreted gradually over days to weeks, and augments the generally stable and modest levels of dietary exposure to GLY; and second, the prolonged systemic movement of GLY into bone marrow and bone extends contact between GLY and hematopoietic stem cells (HSC), increasing the risk of GLY-induced breaks and rearrangements in the DNA in HSCs. Studies confirm that GLY and glyphosate-based herbicides (GBHs) can trigger oxidative stress and impair DNA-repair mechanisms. Animal bioassays and epidemiology studies link GLY/GBH exposures to heightened risk of blood cancers, and possibly other pathologies. The hypothesis proposed here provides a plausible pathophysiologic basis for these observations relative, in particular, to blood cancers.</p></div>\",\"PeriodicalId\":546,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s12302-025-01057-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-025-01057-1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-025-01057-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尽管暴露的模式是间歇性和可变的,但在除草剂施施者和一般公众的尿液中检测到的草甘膦(GLY)水平在空间(城市与农村)和时间(除草喷雾季节,而不是喷雾季节)上相对稳定。大量的GLY代谢数据表明,在进入血液的几分钟内,GLY进入骨髓,然后通过骨组织横向进入全身循环。当GLY通过骨骼移动时,它与钙接触,并通过螯合作用固定一部分。研究人员提出了一个新的两部分假设:首先,尿液中GLY水平缺乏变化的可能原因是,储存在骨骼中的GLY在数天至数周内逐渐排出,并增加了一般稳定和适度的饮食暴露于GLY水平;其次,GLY进入骨髓和骨骼的长期系统性运动延长了GLY与造血干细胞(HSC)之间的接触,增加了GLY诱导HSC中DNA断裂和重排的风险。研究证实,GLY和草甘膦除草剂(GBHs)可引发氧化应激并损害dna修复机制。动物生物测定和流行病学研究将GLY/GBH暴露与血癌以及可能的其他疾病的高风险联系起来。这里提出的假设为这些观察提供了一个合理的病理生理学基础,特别是与血癌有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypothesis: glyphosate-based herbicides can increase risk of hematopoietic malignancies through extended persistence in bone

Despite episodic and variable patterns of exposure, the levels of glyphosate (GLY) detected in the urine of herbicide applicators and the general public are relatively stable across space (urban vs. rural) and time (weed spray season, not spray season). Substantial GLY metabolism data show that within minutes of entering the bloodstream, GLY moves into bone marrow, and then laterally through bone tissue and back into general circulation. As GLY moves through bone it comes into contact with calcium and a portion is immobilized via chelation. A novel two-part hypothesis is explored: first, the likely reason for the lack of variability in GLY levels in urine is that GLY stored in bone is excreted gradually over days to weeks, and augments the generally stable and modest levels of dietary exposure to GLY; and second, the prolonged systemic movement of GLY into bone marrow and bone extends contact between GLY and hematopoietic stem cells (HSC), increasing the risk of GLY-induced breaks and rearrangements in the DNA in HSCs. Studies confirm that GLY and glyphosate-based herbicides (GBHs) can trigger oxidative stress and impair DNA-repair mechanisms. Animal bioassays and epidemiology studies link GLY/GBH exposures to heightened risk of blood cancers, and possibly other pathologies. The hypothesis proposed here provides a plausible pathophysiologic basis for these observations relative, in particular, to blood cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Sciences Europe
Environmental Sciences Europe Environmental Science-Pollution
CiteScore
11.20
自引率
1.70%
发文量
110
审稿时长
13 weeks
期刊介绍: ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation. ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation. ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation. Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues. Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信