{"title":"具有初始应力的生物浅壳非线性形态弹性理论","authors":"D. Andrini, X. Chen, P. Ciarletta","doi":"10.1007/s10659-025-10113-z","DOIUrl":null,"url":null,"abstract":"<div><p>Shallow shells are widely encountered in biological structures, especially during embryogenesis, when they undergo significant shape variations. As a consequence of geometric frustration caused by underlying biological processes of growth and remodeling, such thin and moderately curved biological structures experience initial stress even in the absence of an imposed deformation. In this work, we perform a rigorous asymptotic expansion from three-dimensional elasticitiy to obtain a nonlinear morphoelastic theory for shallow shells accounting for both initial stress and large displacements. By application of the principle of stationary energy for admissible variation of the tangent and normal displacement fields with respect to the reference middle surface, we derive two generalised nonlinear equilibrium equations of the Marguerre-von Kármán type. We illustrate how initial stress distributions drive the emergence of spontaneous mean and Gaussian curvatures which are generally not compatible with the existence of a stress free configuration. We also show how such spontaneous curvatures influence the structural behavior in the solutions of two systems: a saddle-like and a cylindrical shallow shell.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-025-10113-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Morphoelastic Theory of Biological Shallow Shells with Initial Stress\",\"authors\":\"D. Andrini, X. Chen, P. Ciarletta\",\"doi\":\"10.1007/s10659-025-10113-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shallow shells are widely encountered in biological structures, especially during embryogenesis, when they undergo significant shape variations. As a consequence of geometric frustration caused by underlying biological processes of growth and remodeling, such thin and moderately curved biological structures experience initial stress even in the absence of an imposed deformation. In this work, we perform a rigorous asymptotic expansion from three-dimensional elasticitiy to obtain a nonlinear morphoelastic theory for shallow shells accounting for both initial stress and large displacements. By application of the principle of stationary energy for admissible variation of the tangent and normal displacement fields with respect to the reference middle surface, we derive two generalised nonlinear equilibrium equations of the Marguerre-von Kármán type. We illustrate how initial stress distributions drive the emergence of spontaneous mean and Gaussian curvatures which are generally not compatible with the existence of a stress free configuration. We also show how such spontaneous curvatures influence the structural behavior in the solutions of two systems: a saddle-like and a cylindrical shallow shell.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10659-025-10113-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-025-10113-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10113-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Nonlinear Morphoelastic Theory of Biological Shallow Shells with Initial Stress
Shallow shells are widely encountered in biological structures, especially during embryogenesis, when they undergo significant shape variations. As a consequence of geometric frustration caused by underlying biological processes of growth and remodeling, such thin and moderately curved biological structures experience initial stress even in the absence of an imposed deformation. In this work, we perform a rigorous asymptotic expansion from three-dimensional elasticitiy to obtain a nonlinear morphoelastic theory for shallow shells accounting for both initial stress and large displacements. By application of the principle of stationary energy for admissible variation of the tangent and normal displacement fields with respect to the reference middle surface, we derive two generalised nonlinear equilibrium equations of the Marguerre-von Kármán type. We illustrate how initial stress distributions drive the emergence of spontaneous mean and Gaussian curvatures which are generally not compatible with the existence of a stress free configuration. We also show how such spontaneous curvatures influence the structural behavior in the solutions of two systems: a saddle-like and a cylindrical shallow shell.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.